Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibfval Structured version   Visualization version   GIF version

Theorem dibfval 41160
Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
dibval.b 𝐵 = (Base‘𝐾)
dibval.h 𝐻 = (LHyp‘𝐾)
dibval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dibval.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibval.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibfval ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
Distinct variable groups:   𝑥,𝑓,𝐾   𝑥,𝐽   𝑓,𝑊,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑇(𝑥,𝑓)   𝐻(𝑥,𝑓)   𝐼(𝑥,𝑓)   𝐽(𝑓)   𝑉(𝑥,𝑓)   0 (𝑥,𝑓)

Proof of Theorem dibfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dibval.i . . 3 𝐼 = ((DIsoB‘𝐾)‘𝑊)
2 dibval.b . . . . 5 𝐵 = (Base‘𝐾)
3 dibval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3dibffval 41159 . . . 4 (𝐾𝑉 → (DIsoB‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))))
54fveq1d 6878 . . 3 (𝐾𝑉 → ((DIsoB‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))‘𝑊))
61, 5eqtrid 2782 . 2 (𝐾𝑉𝐼 = ((𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))‘𝑊))
7 fveq2 6876 . . . . . 6 (𝑤 = 𝑊 → ((DIsoA‘𝐾)‘𝑤) = ((DIsoA‘𝐾)‘𝑊))
8 dibval.j . . . . . 6 𝐽 = ((DIsoA‘𝐾)‘𝑊)
97, 8eqtr4di 2788 . . . . 5 (𝑤 = 𝑊 → ((DIsoA‘𝐾)‘𝑤) = 𝐽)
109dmeqd 5885 . . . 4 (𝑤 = 𝑊 → dom ((DIsoA‘𝐾)‘𝑤) = dom 𝐽)
119fveq1d 6878 . . . . 5 (𝑤 = 𝑊 → (((DIsoA‘𝐾)‘𝑤)‘𝑥) = (𝐽𝑥))
12 fveq2 6876 . . . . . . . . 9 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
13 dibval.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
1412, 13eqtr4di 2788 . . . . . . . 8 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
15 eqidd 2736 . . . . . . . 8 (𝑤 = 𝑊 → ( I ↾ 𝐵) = ( I ↾ 𝐵))
1614, 15mpteq12dv 5207 . . . . . . 7 (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵)) = (𝑓𝑇 ↦ ( I ↾ 𝐵)))
17 dibval.o . . . . . . 7 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
1816, 17eqtr4di 2788 . . . . . 6 (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵)) = 0 )
1918sneqd 4613 . . . . 5 (𝑤 = 𝑊 → {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))} = { 0 })
2011, 19xpeq12d 5685 . . . 4 (𝑤 = 𝑊 → ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}) = ((𝐽𝑥) × { 0 }))
2110, 20mpteq12dv 5207 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})) = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
22 eqid 2735 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))
238fvexi 6890 . . . . 5 𝐽 ∈ V
2423dmex 7905 . . . 4 dom 𝐽 ∈ V
2524mptex 7215 . . 3 (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })) ∈ V
2621, 22, 25fvmpt 6986 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))‘𝑊) = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
276, 26sylan9eq 2790 1 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {csn 4601  cmpt 5201   I cid 5547   × cxp 5652  dom cdm 5654  cres 5656  cfv 6531  Basecbs 17228  LHypclh 40003  LTrncltrn 40120  DIsoAcdia 41047  DIsoBcdib 41157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-dib 41158
This theorem is referenced by:  dibval  41161  dibfna  41173
  Copyright terms: Public domain W3C validator