Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibfval Structured version   Visualization version   GIF version

Theorem dibfval 41135
Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
dibval.b 𝐵 = (Base‘𝐾)
dibval.h 𝐻 = (LHyp‘𝐾)
dibval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dibval.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibval.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibfval ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
Distinct variable groups:   𝑥,𝑓,𝐾   𝑥,𝐽   𝑓,𝑊,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑇(𝑥,𝑓)   𝐻(𝑥,𝑓)   𝐼(𝑥,𝑓)   𝐽(𝑓)   𝑉(𝑥,𝑓)   0 (𝑥,𝑓)

Proof of Theorem dibfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dibval.i . . 3 𝐼 = ((DIsoB‘𝐾)‘𝑊)
2 dibval.b . . . . 5 𝐵 = (Base‘𝐾)
3 dibval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3dibffval 41134 . . . 4 (𝐾𝑉 → (DIsoB‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))))
54fveq1d 6860 . . 3 (𝐾𝑉 → ((DIsoB‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))‘𝑊))
61, 5eqtrid 2776 . 2 (𝐾𝑉𝐼 = ((𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))‘𝑊))
7 fveq2 6858 . . . . . 6 (𝑤 = 𝑊 → ((DIsoA‘𝐾)‘𝑤) = ((DIsoA‘𝐾)‘𝑊))
8 dibval.j . . . . . 6 𝐽 = ((DIsoA‘𝐾)‘𝑊)
97, 8eqtr4di 2782 . . . . 5 (𝑤 = 𝑊 → ((DIsoA‘𝐾)‘𝑤) = 𝐽)
109dmeqd 5869 . . . 4 (𝑤 = 𝑊 → dom ((DIsoA‘𝐾)‘𝑤) = dom 𝐽)
119fveq1d 6860 . . . . 5 (𝑤 = 𝑊 → (((DIsoA‘𝐾)‘𝑤)‘𝑥) = (𝐽𝑥))
12 fveq2 6858 . . . . . . . . 9 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
13 dibval.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
1412, 13eqtr4di 2782 . . . . . . . 8 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
15 eqidd 2730 . . . . . . . 8 (𝑤 = 𝑊 → ( I ↾ 𝐵) = ( I ↾ 𝐵))
1614, 15mpteq12dv 5194 . . . . . . 7 (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵)) = (𝑓𝑇 ↦ ( I ↾ 𝐵)))
17 dibval.o . . . . . . 7 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
1816, 17eqtr4di 2782 . . . . . 6 (𝑤 = 𝑊 → (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵)) = 0 )
1918sneqd 4601 . . . . 5 (𝑤 = 𝑊 → {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))} = { 0 })
2011, 19xpeq12d 5669 . . . 4 (𝑤 = 𝑊 → ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}) = ((𝐽𝑥) × { 0 }))
2110, 20mpteq12dv 5194 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})) = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
22 eqid 2729 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))}))) = (𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))
238fvexi 6872 . . . . 5 𝐽 ∈ V
2423dmex 7885 . . . 4 dom 𝐽 ∈ V
2524mptex 7197 . . 3 (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })) ∈ V
2621, 22, 25fvmpt 6968 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥 ∈ dom ((DIsoA‘𝐾)‘𝑤) ↦ ((((DIsoA‘𝐾)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ( I ↾ 𝐵))})))‘𝑊) = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
276, 26sylan9eq 2784 1 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4589  cmpt 5188   I cid 5532   × cxp 5636  dom cdm 5638  cres 5640  cfv 6511  Basecbs 17179  LHypclh 39978  LTrncltrn 40095  DIsoAcdia 41022  DIsoBcdib 41132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-dib 41133
This theorem is referenced by:  dibval  41136  dibfna  41148
  Copyright terms: Public domain W3C validator