MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restdis Structured version   Visualization version   GIF version

Theorem restdis 21262
Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
restdis ((𝐴𝑉𝐵𝐴) → (𝒫 𝐴t 𝐵) = 𝒫 𝐵)

Proof of Theorem restdis
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 distop 21079 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
21adantr 472 . . . 4 ((𝐴𝑉𝐵𝐴) → 𝒫 𝐴 ∈ Top)
3 elpw2g 4985 . . . . 5 (𝐴𝑉 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
43biimpar 469 . . . 4 ((𝐴𝑉𝐵𝐴) → 𝐵 ∈ 𝒫 𝐴)
5 restopn2 21261 . . . 4 ((𝒫 𝐴 ∈ Top ∧ 𝐵 ∈ 𝒫 𝐴) → (𝑥 ∈ (𝒫 𝐴t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
62, 4, 5syl2anc 579 . . 3 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ (𝒫 𝐴t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
7 selpw 4322 . . . 4 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
8 sstr 3769 . . . . . . . 8 ((𝑥𝐵𝐵𝐴) → 𝑥𝐴)
98expcom 402 . . . . . . 7 (𝐵𝐴 → (𝑥𝐵𝑥𝐴))
109adantl 473 . . . . . 6 ((𝐴𝑉𝐵𝐴) → (𝑥𝐵𝑥𝐴))
11 selpw 4322 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1210, 11syl6ibr 243 . . . . 5 ((𝐴𝑉𝐵𝐴) → (𝑥𝐵𝑥 ∈ 𝒫 𝐴))
1312pm4.71rd 558 . . . 4 ((𝐴𝑉𝐵𝐴) → (𝑥𝐵 ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
147, 13syl5bb 274 . . 3 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ 𝒫 𝐵 ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
156, 14bitr4d 273 . 2 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ (𝒫 𝐴t 𝐵) ↔ 𝑥 ∈ 𝒫 𝐵))
1615eqrdv 2763 1 ((𝐴𝑉𝐵𝐴) → (𝒫 𝐴t 𝐵) = 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wss 3732  𝒫 cpw 4315  (class class class)co 6842  t crest 16349  Topctop 20977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-oadd 7768  df-er 7947  df-en 8161  df-fin 8164  df-fi 8524  df-rest 16351  df-topgen 16372  df-top 20978  df-topon 20995  df-bases 21030
This theorem is referenced by:  dislly  21580  xkopt  21738
  Copyright terms: Public domain W3C validator