MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restdis Structured version   Visualization version   GIF version

Theorem restdis 23114
Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
restdis ((𝐴𝑉𝐵𝐴) → (𝒫 𝐴t 𝐵) = 𝒫 𝐵)

Proof of Theorem restdis
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 distop 22931 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
2 elpw2g 5303 . . . . 5 (𝐴𝑉 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
32biimpar 477 . . . 4 ((𝐴𝑉𝐵𝐴) → 𝐵 ∈ 𝒫 𝐴)
4 restopn2 23113 . . . 4 ((𝒫 𝐴 ∈ Top ∧ 𝐵 ∈ 𝒫 𝐴) → (𝑥 ∈ (𝒫 𝐴t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
51, 3, 4syl2an2r 685 . . 3 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ (𝒫 𝐴t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
6 velpw 4580 . . . 4 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
7 sstr 3967 . . . . . . . 8 ((𝑥𝐵𝐵𝐴) → 𝑥𝐴)
87expcom 413 . . . . . . 7 (𝐵𝐴 → (𝑥𝐵𝑥𝐴))
98adantl 481 . . . . . 6 ((𝐴𝑉𝐵𝐴) → (𝑥𝐵𝑥𝐴))
10 velpw 4580 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
119, 10imbitrrdi 252 . . . . 5 ((𝐴𝑉𝐵𝐴) → (𝑥𝐵𝑥 ∈ 𝒫 𝐴))
1211pm4.71rd 562 . . . 4 ((𝐴𝑉𝐵𝐴) → (𝑥𝐵 ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
136, 12bitrid 283 . . 3 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ 𝒫 𝐵 ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
145, 13bitr4d 282 . 2 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ (𝒫 𝐴t 𝐵) ↔ 𝑥 ∈ 𝒫 𝐵))
1514eqrdv 2733 1 ((𝐴𝑉𝐵𝐴) → (𝒫 𝐴t 𝐵) = 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wss 3926  𝒫 cpw 4575  (class class class)co 7403  t crest 17432  Topctop 22829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-en 8958  df-fin 8961  df-fi 9421  df-rest 17434  df-topgen 17455  df-top 22830  df-topon 22847  df-bases 22882
This theorem is referenced by:  dislly  23433  xkopt  23591
  Copyright terms: Public domain W3C validator