MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restdis Structured version   Visualization version   GIF version

Theorem restdis 23207
Description: A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
restdis ((𝐴𝑉𝐵𝐴) → (𝒫 𝐴t 𝐵) = 𝒫 𝐵)

Proof of Theorem restdis
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 distop 23023 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
2 elpw2g 5351 . . . . 5 (𝐴𝑉 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
32biimpar 477 . . . 4 ((𝐴𝑉𝐵𝐴) → 𝐵 ∈ 𝒫 𝐴)
4 restopn2 23206 . . . 4 ((𝒫 𝐴 ∈ Top ∧ 𝐵 ∈ 𝒫 𝐴) → (𝑥 ∈ (𝒫 𝐴t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
51, 3, 4syl2an2r 684 . . 3 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ (𝒫 𝐴t 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
6 velpw 4627 . . . 4 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
7 sstr 4017 . . . . . . . 8 ((𝑥𝐵𝐵𝐴) → 𝑥𝐴)
87expcom 413 . . . . . . 7 (𝐵𝐴 → (𝑥𝐵𝑥𝐴))
98adantl 481 . . . . . 6 ((𝐴𝑉𝐵𝐴) → (𝑥𝐵𝑥𝐴))
10 velpw 4627 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
119, 10imbitrrdi 252 . . . . 5 ((𝐴𝑉𝐵𝐴) → (𝑥𝐵𝑥 ∈ 𝒫 𝐴))
1211pm4.71rd 562 . . . 4 ((𝐴𝑉𝐵𝐴) → (𝑥𝐵 ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
136, 12bitrid 283 . . 3 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ 𝒫 𝐵 ↔ (𝑥 ∈ 𝒫 𝐴𝑥𝐵)))
145, 13bitr4d 282 . 2 ((𝐴𝑉𝐵𝐴) → (𝑥 ∈ (𝒫 𝐴t 𝐵) ↔ 𝑥 ∈ 𝒫 𝐵))
1514eqrdv 2738 1 ((𝐴𝑉𝐵𝐴) → (𝒫 𝐴t 𝐵) = 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wss 3976  𝒫 cpw 4622  (class class class)co 7448  t crest 17480  Topctop 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-en 9004  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974
This theorem is referenced by:  dislly  23526  xkopt  23684
  Copyright terms: Public domain W3C validator