![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unisg | Structured version Visualization version GIF version |
Description: The sigma-algebra generated by a collection 𝐴 is a sigma-algebra on ∪ 𝐴. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
Ref | Expression |
---|---|
unisg | ⊢ (𝐴 ∈ 𝑉 → ∪ (sigaGen‘𝐴) = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigagensiga 33134 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) | |
2 | issgon 33116 | . . . 4 ⊢ ((sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴) ↔ ((sigaGen‘𝐴) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐴 = ∪ (sigaGen‘𝐴))) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((sigaGen‘𝐴) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐴 = ∪ (sigaGen‘𝐴))) |
4 | 3 | simprd 496 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪ (sigaGen‘𝐴)) |
5 | 4 | eqcomd 2738 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ (sigaGen‘𝐴) = ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∪ cuni 4908 ran crn 5677 ‘cfv 6543 sigAlgebracsiga 33101 sigaGencsigagen 33131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-siga 33102 df-sigagen 33132 |
This theorem is referenced by: unibrsiga 33179 sxsigon 33185 imambfm 33256 cnmbfm 33257 sibf0 33328 sibff 33330 sibfof 33334 sitgclg 33336 orvcval4 33454 |
Copyright terms: Public domain | W3C validator |