| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unisg | Structured version Visualization version GIF version | ||
| Description: The sigma-algebra generated by a collection 𝐴 is a sigma-algebra on ∪ 𝐴. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
| Ref | Expression |
|---|---|
| unisg | ⊢ (𝐴 ∈ 𝑉 → ∪ (sigaGen‘𝐴) = ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sigagensiga 34138 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) | |
| 2 | issgon 34120 | . . . 4 ⊢ ((sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴) ↔ ((sigaGen‘𝐴) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐴 = ∪ (sigaGen‘𝐴))) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((sigaGen‘𝐴) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐴 = ∪ (sigaGen‘𝐴))) |
| 4 | 3 | simprd 495 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪ (sigaGen‘𝐴)) |
| 5 | 4 | eqcomd 2736 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ (sigaGen‘𝐴) = ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cuni 4874 ran crn 5642 ‘cfv 6514 sigAlgebracsiga 34105 sigaGencsigagen 34135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-siga 34106 df-sigagen 34136 |
| This theorem is referenced by: unibrsiga 34183 sxsigon 34189 imambfm 34260 cnmbfm 34261 sibf0 34332 sibff 34334 sibfof 34338 sitgclg 34340 orvcval4 34459 |
| Copyright terms: Public domain | W3C validator |