Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisg Structured version   Visualization version   GIF version

Theorem unisg 34124
Description: The sigma-algebra generated by a collection 𝐴 is a sigma-algebra on 𝐴. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
unisg (𝐴𝑉 (sigaGen‘𝐴) = 𝐴)

Proof of Theorem unisg
StepHypRef Expression
1 sigagensiga 34122 . . . 4 (𝐴𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴))
2 issgon 34104 . . . 4 ((sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴) ↔ ((sigaGen‘𝐴) ∈ ran sigAlgebra ∧ 𝐴 = (sigaGen‘𝐴)))
31, 2sylib 218 . . 3 (𝐴𝑉 → ((sigaGen‘𝐴) ∈ ran sigAlgebra ∧ 𝐴 = (sigaGen‘𝐴)))
43simprd 495 . 2 (𝐴𝑉 𝐴 = (sigaGen‘𝐴))
54eqcomd 2741 1 (𝐴𝑉 (sigaGen‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106   cuni 4912  ran crn 5690  cfv 6563  sigAlgebracsiga 34089  sigaGencsigagen 34119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571  df-siga 34090  df-sigagen 34120
This theorem is referenced by:  unibrsiga  34167  sxsigon  34173  imambfm  34244  cnmbfm  34245  sibf0  34316  sibff  34318  sibfof  34322  sitgclg  34324  orvcval4  34442
  Copyright terms: Public domain W3C validator