| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unisg | Structured version Visualization version GIF version | ||
| Description: The sigma-algebra generated by a collection 𝐴 is a sigma-algebra on ∪ 𝐴. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
| Ref | Expression |
|---|---|
| unisg | ⊢ (𝐴 ∈ 𝑉 → ∪ (sigaGen‘𝐴) = ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sigagensiga 34172 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) | |
| 2 | issgon 34154 | . . . 4 ⊢ ((sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴) ↔ ((sigaGen‘𝐴) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐴 = ∪ (sigaGen‘𝐴))) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((sigaGen‘𝐴) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐴 = ∪ (sigaGen‘𝐴))) |
| 4 | 3 | simprd 495 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪ (sigaGen‘𝐴)) |
| 5 | 4 | eqcomd 2741 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ (sigaGen‘𝐴) = ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cuni 4883 ran crn 5655 ‘cfv 6531 sigAlgebracsiga 34139 sigaGencsigagen 34169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 df-siga 34140 df-sigagen 34170 |
| This theorem is referenced by: unibrsiga 34217 sxsigon 34223 imambfm 34294 cnmbfm 34295 sibf0 34366 sibff 34368 sibfof 34372 sitgclg 34374 orvcval4 34493 |
| Copyright terms: Public domain | W3C validator |