Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisg Structured version   Visualization version   GIF version

Theorem unisg 34133
Description: The sigma-algebra generated by a collection 𝐴 is a sigma-algebra on 𝐴. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
unisg (𝐴𝑉 (sigaGen‘𝐴) = 𝐴)

Proof of Theorem unisg
StepHypRef Expression
1 sigagensiga 34131 . . . 4 (𝐴𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴))
2 issgon 34113 . . . 4 ((sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴) ↔ ((sigaGen‘𝐴) ∈ ran sigAlgebra ∧ 𝐴 = (sigaGen‘𝐴)))
31, 2sylib 218 . . 3 (𝐴𝑉 → ((sigaGen‘𝐴) ∈ ran sigAlgebra ∧ 𝐴 = (sigaGen‘𝐴)))
43simprd 495 . 2 (𝐴𝑉 𝐴 = (sigaGen‘𝐴))
54eqcomd 2735 1 (𝐴𝑉 (sigaGen‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   cuni 4871  ran crn 5639  cfv 6511  sigAlgebracsiga 34098  sigaGencsigagen 34128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-siga 34099  df-sigagen 34129
This theorem is referenced by:  unibrsiga  34176  sxsigon  34182  imambfm  34253  cnmbfm  34254  sibf0  34325  sibff  34327  sibfof  34331  sitgclg  34333  orvcval4  34452
  Copyright terms: Public domain W3C validator