| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unisg | Structured version Visualization version GIF version | ||
| Description: The sigma-algebra generated by a collection 𝐴 is a sigma-algebra on ∪ 𝐴. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
| Ref | Expression |
|---|---|
| unisg | ⊢ (𝐴 ∈ 𝑉 → ∪ (sigaGen‘𝐴) = ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sigagensiga 34127 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) | |
| 2 | issgon 34109 | . . . 4 ⊢ ((sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴) ↔ ((sigaGen‘𝐴) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐴 = ∪ (sigaGen‘𝐴))) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((sigaGen‘𝐴) ∈ ∪ ran sigAlgebra ∧ ∪ 𝐴 = ∪ (sigaGen‘𝐴))) |
| 4 | 3 | simprd 495 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪ (sigaGen‘𝐴)) |
| 5 | 4 | eqcomd 2735 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ (sigaGen‘𝐴) = ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cuni 4861 ran crn 5624 ‘cfv 6486 sigAlgebracsiga 34094 sigaGencsigagen 34124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-siga 34095 df-sigagen 34125 |
| This theorem is referenced by: unibrsiga 34172 sxsigon 34178 imambfm 34249 cnmbfm 34250 sibf0 34321 sibff 34323 sibfof 34327 sitgclg 34329 orvcval4 34448 |
| Copyright terms: Public domain | W3C validator |