Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisg Structured version   Visualization version   GIF version

Theorem unisg 33136
Description: The sigma-algebra generated by a collection 𝐴 is a sigma-algebra on 𝐴. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
unisg (𝐴𝑉 (sigaGen‘𝐴) = 𝐴)

Proof of Theorem unisg
StepHypRef Expression
1 sigagensiga 33134 . . . 4 (𝐴𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴))
2 issgon 33116 . . . 4 ((sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴) ↔ ((sigaGen‘𝐴) ∈ ran sigAlgebra ∧ 𝐴 = (sigaGen‘𝐴)))
31, 2sylib 217 . . 3 (𝐴𝑉 → ((sigaGen‘𝐴) ∈ ran sigAlgebra ∧ 𝐴 = (sigaGen‘𝐴)))
43simprd 496 . 2 (𝐴𝑉 𝐴 = (sigaGen‘𝐴))
54eqcomd 2738 1 (𝐴𝑉 (sigaGen‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106   cuni 4908  ran crn 5677  cfv 6543  sigAlgebracsiga 33101  sigaGencsigagen 33131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551  df-siga 33102  df-sigagen 33132
This theorem is referenced by:  unibrsiga  33179  sxsigon  33185  imambfm  33256  cnmbfm  33257  sibf0  33328  sibff  33330  sibfof  33334  sitgclg  33336  orvcval4  33454
  Copyright terms: Public domain W3C validator