Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwsiga | Structured version Visualization version GIF version |
Description: Any power set forms a sigma-algebra. (Contributed by Thierry Arnoux, 13-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.) |
Ref | Expression |
---|---|
pwsiga | ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 3944 | . 2 ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ⊆ 𝒫 𝑂) | |
2 | pwidg 4555 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝒫 𝑂) | |
3 | difss 4066 | . . . . . 6 ⊢ (𝑂 ∖ 𝑥) ⊆ 𝑂 | |
4 | elpw2g 5268 | . . . . . 6 ⊢ (𝑂 ∈ 𝑉 → ((𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ↔ (𝑂 ∖ 𝑥) ⊆ 𝑂)) | |
5 | 3, 4 | mpbiri 257 | . . . . 5 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∖ 𝑥) ∈ 𝒫 𝑂) |
6 | 5 | a1d 25 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝑂 → (𝑂 ∖ 𝑥) ∈ 𝒫 𝑂)) |
7 | 6 | ralrimiv 3102 | . . 3 ⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂) |
8 | sspwuni 5029 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝒫 𝑂 ↔ ∪ 𝑥 ⊆ 𝑂) | |
9 | vuniex 7592 | . . . . . . . . 9 ⊢ ∪ 𝑥 ∈ V | |
10 | 9 | elpw 4537 | . . . . . . . 8 ⊢ (∪ 𝑥 ∈ 𝒫 𝑂 ↔ ∪ 𝑥 ⊆ 𝑂) |
11 | 8, 10 | bitr4i 277 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝒫 𝑂 ↔ ∪ 𝑥 ∈ 𝒫 𝑂) |
12 | 11 | biimpi 215 | . . . . . 6 ⊢ (𝑥 ⊆ 𝒫 𝑂 → ∪ 𝑥 ∈ 𝒫 𝑂) |
13 | 12 | a1d 25 | . . . . 5 ⊢ (𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂)) |
14 | elpwi 4542 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝒫 𝑂 → 𝑥 ⊆ 𝒫 𝑂) | |
15 | 14 | imim1i 63 | . . . . 5 ⊢ ((𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂)) → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))) |
16 | 13, 15 | mp1i 13 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))) |
17 | 16 | ralrimiv 3102 | . . 3 ⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂)) |
18 | 2, 7, 17 | 3jca 1127 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))) |
19 | pwexg 5301 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ V) | |
20 | issiga 32080 | . . 3 ⊢ (𝒫 𝑂 ∈ V → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))))) | |
21 | 19, 20 | syl 17 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))))) |
22 | 1, 18, 21 | mpbir2and 710 | 1 ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 class class class wbr 5074 ‘cfv 6433 ωcom 7712 ≼ cdom 8731 sigAlgebracsiga 32076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-siga 32077 |
This theorem is referenced by: sigagenval 32108 dmsigagen 32112 ldsysgenld 32128 pwcntmeas 32195 ddemeas 32204 mbfmcnt 32235 |
Copyright terms: Public domain | W3C validator |