Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwsiga Structured version   Visualization version   GIF version

Theorem pwsiga 34131
Description: Any power set forms a sigma-algebra. (Contributed by Thierry Arnoux, 13-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.)
Assertion
Ref Expression
pwsiga (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))

Proof of Theorem pwsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssidd 4007 . 2 (𝑂𝑉 → 𝒫 𝑂 ⊆ 𝒫 𝑂)
2 pwidg 4620 . . 3 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
3 difss 4136 . . . . . 6 (𝑂𝑥) ⊆ 𝑂
4 elpw2g 5333 . . . . . 6 (𝑂𝑉 → ((𝑂𝑥) ∈ 𝒫 𝑂 ↔ (𝑂𝑥) ⊆ 𝑂))
53, 4mpbiri 258 . . . . 5 (𝑂𝑉 → (𝑂𝑥) ∈ 𝒫 𝑂)
65a1d 25 . . . 4 (𝑂𝑉 → (𝑥 ∈ 𝒫 𝑂 → (𝑂𝑥) ∈ 𝒫 𝑂))
76ralrimiv 3145 . . 3 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂)
8 sspwuni 5100 . . . . . . . 8 (𝑥 ⊆ 𝒫 𝑂 𝑥𝑂)
9 vuniex 7759 . . . . . . . . 9 𝑥 ∈ V
109elpw 4604 . . . . . . . 8 ( 𝑥 ∈ 𝒫 𝑂 𝑥𝑂)
118, 10bitr4i 278 . . . . . . 7 (𝑥 ⊆ 𝒫 𝑂 𝑥 ∈ 𝒫 𝑂)
1211biimpi 216 . . . . . 6 (𝑥 ⊆ 𝒫 𝑂 𝑥 ∈ 𝒫 𝑂)
1312a1d 25 . . . . 5 (𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂))
14 elpwi 4607 . . . . . 6 (𝑥 ∈ 𝒫 𝒫 𝑂𝑥 ⊆ 𝒫 𝑂)
1514imim1i 63 . . . . 5 ((𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)) → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))
1613, 15mp1i 13 . . . 4 (𝑂𝑉 → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))
1716ralrimiv 3145 . . 3 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂))
182, 7, 173jca 1129 . 2 (𝑂𝑉 → (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))
19 pwexg 5378 . . 3 (𝑂𝑉 → 𝒫 𝑂 ∈ V)
20 issiga 34113 . . 3 (𝒫 𝑂 ∈ V → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))))
2119, 20syl 17 . 2 (𝑂𝑉 → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))))
221, 18, 21mpbir2and 713 1 (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wral 3061  Vcvv 3480  cdif 3948  wss 3951  𝒫 cpw 4600   cuni 4907   class class class wbr 5143  cfv 6561  ωcom 7887  cdom 8983  sigAlgebracsiga 34109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-siga 34110
This theorem is referenced by:  sigagenval  34141  dmsigagen  34145  ldsysgenld  34161  pwcntmeas  34228  ddemeas  34237  mbfmcnt  34270
  Copyright terms: Public domain W3C validator