| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pwsiga | Structured version Visualization version GIF version | ||
| Description: Any power set forms a sigma-algebra. (Contributed by Thierry Arnoux, 13-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.) |
| Ref | Expression |
|---|---|
| pwsiga | ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3982 | . 2 ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ⊆ 𝒫 𝑂) | |
| 2 | pwidg 4595 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝒫 𝑂) | |
| 3 | difss 4111 | . . . . . 6 ⊢ (𝑂 ∖ 𝑥) ⊆ 𝑂 | |
| 4 | elpw2g 5303 | . . . . . 6 ⊢ (𝑂 ∈ 𝑉 → ((𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ↔ (𝑂 ∖ 𝑥) ⊆ 𝑂)) | |
| 5 | 3, 4 | mpbiri 258 | . . . . 5 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∖ 𝑥) ∈ 𝒫 𝑂) |
| 6 | 5 | a1d 25 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝑂 → (𝑂 ∖ 𝑥) ∈ 𝒫 𝑂)) |
| 7 | 6 | ralrimiv 3131 | . . 3 ⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂) |
| 8 | sspwuni 5076 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝒫 𝑂 ↔ ∪ 𝑥 ⊆ 𝑂) | |
| 9 | vuniex 7733 | . . . . . . . . 9 ⊢ ∪ 𝑥 ∈ V | |
| 10 | 9 | elpw 4579 | . . . . . . . 8 ⊢ (∪ 𝑥 ∈ 𝒫 𝑂 ↔ ∪ 𝑥 ⊆ 𝑂) |
| 11 | 8, 10 | bitr4i 278 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝒫 𝑂 ↔ ∪ 𝑥 ∈ 𝒫 𝑂) |
| 12 | 11 | biimpi 216 | . . . . . 6 ⊢ (𝑥 ⊆ 𝒫 𝑂 → ∪ 𝑥 ∈ 𝒫 𝑂) |
| 13 | 12 | a1d 25 | . . . . 5 ⊢ (𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂)) |
| 14 | elpwi 4582 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝒫 𝑂 → 𝑥 ⊆ 𝒫 𝑂) | |
| 15 | 14 | imim1i 63 | . . . . 5 ⊢ ((𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂)) → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))) |
| 16 | 13, 15 | mp1i 13 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))) |
| 17 | 16 | ralrimiv 3131 | . . 3 ⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂)) |
| 18 | 2, 7, 17 | 3jca 1128 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))) |
| 19 | pwexg 5348 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ V) | |
| 20 | issiga 34143 | . . 3 ⊢ (𝒫 𝑂 ∈ V → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))))) | |
| 21 | 19, 20 | syl 17 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))))) |
| 22 | 1, 18, 21 | mpbir2and 713 | 1 ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 class class class wbr 5119 ‘cfv 6531 ωcom 7861 ≼ cdom 8957 sigAlgebracsiga 34139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-siga 34140 |
| This theorem is referenced by: sigagenval 34171 dmsigagen 34175 ldsysgenld 34191 pwcntmeas 34258 ddemeas 34267 mbfmcnt 34300 |
| Copyright terms: Public domain | W3C validator |