Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwsiga Structured version   Visualization version   GIF version

Theorem pwsiga 31389
Description: Any power set forms a sigma-algebra. (Contributed by Thierry Arnoux, 13-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.)
Assertion
Ref Expression
pwsiga (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))

Proof of Theorem pwsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssidd 3989 . 2 (𝑂𝑉 → 𝒫 𝑂 ⊆ 𝒫 𝑂)
2 pwidg 4560 . . 3 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
3 difss 4107 . . . . . 6 (𝑂𝑥) ⊆ 𝑂
4 elpw2g 5246 . . . . . 6 (𝑂𝑉 → ((𝑂𝑥) ∈ 𝒫 𝑂 ↔ (𝑂𝑥) ⊆ 𝑂))
53, 4mpbiri 260 . . . . 5 (𝑂𝑉 → (𝑂𝑥) ∈ 𝒫 𝑂)
65a1d 25 . . . 4 (𝑂𝑉 → (𝑥 ∈ 𝒫 𝑂 → (𝑂𝑥) ∈ 𝒫 𝑂))
76ralrimiv 3181 . . 3 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂)
8 sspwuni 5021 . . . . . . . 8 (𝑥 ⊆ 𝒫 𝑂 𝑥𝑂)
9 vuniex 7464 . . . . . . . . 9 𝑥 ∈ V
109elpw 4542 . . . . . . . 8 ( 𝑥 ∈ 𝒫 𝑂 𝑥𝑂)
118, 10bitr4i 280 . . . . . . 7 (𝑥 ⊆ 𝒫 𝑂 𝑥 ∈ 𝒫 𝑂)
1211biimpi 218 . . . . . 6 (𝑥 ⊆ 𝒫 𝑂 𝑥 ∈ 𝒫 𝑂)
1312a1d 25 . . . . 5 (𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂))
14 elpwi 4547 . . . . . 6 (𝑥 ∈ 𝒫 𝒫 𝑂𝑥 ⊆ 𝒫 𝑂)
1514imim1i 63 . . . . 5 ((𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)) → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))
1613, 15mp1i 13 . . . 4 (𝑂𝑉 → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))
1716ralrimiv 3181 . . 3 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂))
182, 7, 173jca 1124 . 2 (𝑂𝑉 → (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))
19 pwexg 5278 . . 3 (𝑂𝑉 → 𝒫 𝑂 ∈ V)
20 issiga 31371 . . 3 (𝒫 𝑂 ∈ V → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))))
2119, 20syl 17 . 2 (𝑂𝑉 → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))))
221, 18, 21mpbir2and 711 1 (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2110  wral 3138  Vcvv 3494  cdif 3932  wss 3935  𝒫 cpw 4538   cuni 4837   class class class wbr 5065  cfv 6354  ωcom 7579  cdom 8506  sigAlgebracsiga 31367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6313  df-fun 6356  df-fv 6362  df-siga 31368
This theorem is referenced by:  sigagenval  31399  dmsigagen  31403  ldsysgenld  31419  pwcntmeas  31486  ddemeas  31495  mbfmcnt  31526
  Copyright terms: Public domain W3C validator