![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwsiga | Structured version Visualization version GIF version |
Description: Any power set forms a sigma-algebra. (Contributed by Thierry Arnoux, 13-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.) |
Ref | Expression |
---|---|
pwsiga | ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 4032 | . 2 ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ⊆ 𝒫 𝑂) | |
2 | pwidg 4642 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝒫 𝑂) | |
3 | difss 4159 | . . . . . 6 ⊢ (𝑂 ∖ 𝑥) ⊆ 𝑂 | |
4 | elpw2g 5351 | . . . . . 6 ⊢ (𝑂 ∈ 𝑉 → ((𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ↔ (𝑂 ∖ 𝑥) ⊆ 𝑂)) | |
5 | 3, 4 | mpbiri 258 | . . . . 5 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∖ 𝑥) ∈ 𝒫 𝑂) |
6 | 5 | a1d 25 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝑂 → (𝑂 ∖ 𝑥) ∈ 𝒫 𝑂)) |
7 | 6 | ralrimiv 3151 | . . 3 ⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂) |
8 | sspwuni 5123 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝒫 𝑂 ↔ ∪ 𝑥 ⊆ 𝑂) | |
9 | vuniex 7774 | . . . . . . . . 9 ⊢ ∪ 𝑥 ∈ V | |
10 | 9 | elpw 4626 | . . . . . . . 8 ⊢ (∪ 𝑥 ∈ 𝒫 𝑂 ↔ ∪ 𝑥 ⊆ 𝑂) |
11 | 8, 10 | bitr4i 278 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝒫 𝑂 ↔ ∪ 𝑥 ∈ 𝒫 𝑂) |
12 | 11 | biimpi 216 | . . . . . 6 ⊢ (𝑥 ⊆ 𝒫 𝑂 → ∪ 𝑥 ∈ 𝒫 𝑂) |
13 | 12 | a1d 25 | . . . . 5 ⊢ (𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂)) |
14 | elpwi 4629 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝒫 𝑂 → 𝑥 ⊆ 𝒫 𝑂) | |
15 | 14 | imim1i 63 | . . . . 5 ⊢ ((𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂)) → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))) |
16 | 13, 15 | mp1i 13 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))) |
17 | 16 | ralrimiv 3151 | . . 3 ⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂)) |
18 | 2, 7, 17 | 3jca 1128 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))) |
19 | pwexg 5396 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ V) | |
20 | issiga 34076 | . . 3 ⊢ (𝒫 𝑂 ∈ V → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))))) | |
21 | 19, 20 | syl 17 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))))) |
22 | 1, 18, 21 | mpbir2and 712 | 1 ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 class class class wbr 5166 ‘cfv 6573 ωcom 7903 ≼ cdom 9001 sigAlgebracsiga 34072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-siga 34073 |
This theorem is referenced by: sigagenval 34104 dmsigagen 34108 ldsysgenld 34124 pwcntmeas 34191 ddemeas 34200 mbfmcnt 34233 |
Copyright terms: Public domain | W3C validator |