![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwsiga | Structured version Visualization version GIF version |
Description: Any power set forms a sigma-algebra. (Contributed by Thierry Arnoux, 13-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.) |
Ref | Expression |
---|---|
pwsiga | ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 4019 | . 2 ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ⊆ 𝒫 𝑂) | |
2 | pwidg 4625 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝒫 𝑂) | |
3 | difss 4146 | . . . . . 6 ⊢ (𝑂 ∖ 𝑥) ⊆ 𝑂 | |
4 | elpw2g 5339 | . . . . . 6 ⊢ (𝑂 ∈ 𝑉 → ((𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ↔ (𝑂 ∖ 𝑥) ⊆ 𝑂)) | |
5 | 3, 4 | mpbiri 258 | . . . . 5 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∖ 𝑥) ∈ 𝒫 𝑂) |
6 | 5 | a1d 25 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝑂 → (𝑂 ∖ 𝑥) ∈ 𝒫 𝑂)) |
7 | 6 | ralrimiv 3143 | . . 3 ⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂) |
8 | sspwuni 5105 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝒫 𝑂 ↔ ∪ 𝑥 ⊆ 𝑂) | |
9 | vuniex 7758 | . . . . . . . . 9 ⊢ ∪ 𝑥 ∈ V | |
10 | 9 | elpw 4609 | . . . . . . . 8 ⊢ (∪ 𝑥 ∈ 𝒫 𝑂 ↔ ∪ 𝑥 ⊆ 𝑂) |
11 | 8, 10 | bitr4i 278 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝒫 𝑂 ↔ ∪ 𝑥 ∈ 𝒫 𝑂) |
12 | 11 | biimpi 216 | . . . . . 6 ⊢ (𝑥 ⊆ 𝒫 𝑂 → ∪ 𝑥 ∈ 𝒫 𝑂) |
13 | 12 | a1d 25 | . . . . 5 ⊢ (𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂)) |
14 | elpwi 4612 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝒫 𝑂 → 𝑥 ⊆ 𝒫 𝑂) | |
15 | 14 | imim1i 63 | . . . . 5 ⊢ ((𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂)) → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))) |
16 | 13, 15 | mp1i 13 | . . . 4 ⊢ (𝑂 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))) |
17 | 16 | ralrimiv 3143 | . . 3 ⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂)) |
18 | 2, 7, 17 | 3jca 1127 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))) |
19 | pwexg 5384 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ V) | |
20 | issiga 34093 | . . 3 ⊢ (𝒫 𝑂 ∈ V → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))))) | |
21 | 19, 20 | syl 17 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂 ∖ 𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝒫 𝑂))))) |
22 | 1, 18, 21 | mpbir2and 713 | 1 ⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ∖ cdif 3960 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 class class class wbr 5148 ‘cfv 6563 ωcom 7887 ≼ cdom 8982 sigAlgebracsiga 34089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-siga 34090 |
This theorem is referenced by: sigagenval 34121 dmsigagen 34125 ldsysgenld 34141 pwcntmeas 34208 ddemeas 34217 mbfmcnt 34250 |
Copyright terms: Public domain | W3C validator |