Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwsiga Structured version   Visualization version   GIF version

Theorem pwsiga 33754
Description: Any power set forms a sigma-algebra. (Contributed by Thierry Arnoux, 13-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.)
Assertion
Ref Expression
pwsiga (𝑂 ∈ 𝑉 β†’ 𝒫 𝑂 ∈ (sigAlgebraβ€˜π‘‚))

Proof of Theorem pwsiga
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 ssidd 4003 . 2 (𝑂 ∈ 𝑉 β†’ 𝒫 𝑂 βŠ† 𝒫 𝑂)
2 pwidg 4624 . . 3 (𝑂 ∈ 𝑉 β†’ 𝑂 ∈ 𝒫 𝑂)
3 difss 4130 . . . . . 6 (𝑂 βˆ– π‘₯) βŠ† 𝑂
4 elpw2g 5348 . . . . . 6 (𝑂 ∈ 𝑉 β†’ ((𝑂 βˆ– π‘₯) ∈ 𝒫 𝑂 ↔ (𝑂 βˆ– π‘₯) βŠ† 𝑂))
53, 4mpbiri 257 . . . . 5 (𝑂 ∈ 𝑉 β†’ (𝑂 βˆ– π‘₯) ∈ 𝒫 𝑂)
65a1d 25 . . . 4 (𝑂 ∈ 𝑉 β†’ (π‘₯ ∈ 𝒫 𝑂 β†’ (𝑂 βˆ– π‘₯) ∈ 𝒫 𝑂))
76ralrimiv 3141 . . 3 (𝑂 ∈ 𝑉 β†’ βˆ€π‘₯ ∈ 𝒫 𝑂(𝑂 βˆ– π‘₯) ∈ 𝒫 𝑂)
8 sspwuni 5105 . . . . . . . 8 (π‘₯ βŠ† 𝒫 𝑂 ↔ βˆͺ π‘₯ βŠ† 𝑂)
9 vuniex 7748 . . . . . . . . 9 βˆͺ π‘₯ ∈ V
109elpw 4608 . . . . . . . 8 (βˆͺ π‘₯ ∈ 𝒫 𝑂 ↔ βˆͺ π‘₯ βŠ† 𝑂)
118, 10bitr4i 277 . . . . . . 7 (π‘₯ βŠ† 𝒫 𝑂 ↔ βˆͺ π‘₯ ∈ 𝒫 𝑂)
1211biimpi 215 . . . . . 6 (π‘₯ βŠ† 𝒫 𝑂 β†’ βˆͺ π‘₯ ∈ 𝒫 𝑂)
1312a1d 25 . . . . 5 (π‘₯ βŠ† 𝒫 𝑂 β†’ (π‘₯ β‰Ό Ο‰ β†’ βˆͺ π‘₯ ∈ 𝒫 𝑂))
14 elpwi 4611 . . . . . 6 (π‘₯ ∈ 𝒫 𝒫 𝑂 β†’ π‘₯ βŠ† 𝒫 𝑂)
1514imim1i 63 . . . . 5 ((π‘₯ βŠ† 𝒫 𝑂 β†’ (π‘₯ β‰Ό Ο‰ β†’ βˆͺ π‘₯ ∈ 𝒫 𝑂)) β†’ (π‘₯ ∈ 𝒫 𝒫 𝑂 β†’ (π‘₯ β‰Ό Ο‰ β†’ βˆͺ π‘₯ ∈ 𝒫 𝑂)))
1613, 15mp1i 13 . . . 4 (𝑂 ∈ 𝑉 β†’ (π‘₯ ∈ 𝒫 𝒫 𝑂 β†’ (π‘₯ β‰Ό Ο‰ β†’ βˆͺ π‘₯ ∈ 𝒫 𝑂)))
1716ralrimiv 3141 . . 3 (𝑂 ∈ 𝑉 β†’ βˆ€π‘₯ ∈ 𝒫 𝒫 𝑂(π‘₯ β‰Ό Ο‰ β†’ βˆͺ π‘₯ ∈ 𝒫 𝑂))
182, 7, 173jca 1125 . 2 (𝑂 ∈ 𝑉 β†’ (𝑂 ∈ 𝒫 𝑂 ∧ βˆ€π‘₯ ∈ 𝒫 𝑂(𝑂 βˆ– π‘₯) ∈ 𝒫 𝑂 ∧ βˆ€π‘₯ ∈ 𝒫 𝒫 𝑂(π‘₯ β‰Ό Ο‰ β†’ βˆͺ π‘₯ ∈ 𝒫 𝑂)))
19 pwexg 5380 . . 3 (𝑂 ∈ 𝑉 β†’ 𝒫 𝑂 ∈ V)
20 issiga 33736 . . 3 (𝒫 𝑂 ∈ V β†’ (𝒫 𝑂 ∈ (sigAlgebraβ€˜π‘‚) ↔ (𝒫 𝑂 βŠ† 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ βˆ€π‘₯ ∈ 𝒫 𝑂(𝑂 βˆ– π‘₯) ∈ 𝒫 𝑂 ∧ βˆ€π‘₯ ∈ 𝒫 𝒫 𝑂(π‘₯ β‰Ό Ο‰ β†’ βˆͺ π‘₯ ∈ 𝒫 𝑂)))))
2119, 20syl 17 . 2 (𝑂 ∈ 𝑉 β†’ (𝒫 𝑂 ∈ (sigAlgebraβ€˜π‘‚) ↔ (𝒫 𝑂 βŠ† 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ βˆ€π‘₯ ∈ 𝒫 𝑂(𝑂 βˆ– π‘₯) ∈ 𝒫 𝑂 ∧ βˆ€π‘₯ ∈ 𝒫 𝒫 𝑂(π‘₯ β‰Ό Ο‰ β†’ βˆͺ π‘₯ ∈ 𝒫 𝑂)))))
221, 18, 21mpbir2and 711 1 (𝑂 ∈ 𝑉 β†’ 𝒫 𝑂 ∈ (sigAlgebraβ€˜π‘‚))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   ∈ wcel 2098  βˆ€wral 3057  Vcvv 3471   βˆ– cdif 3944   βŠ† wss 3947  π’« cpw 4604  βˆͺ cuni 4910   class class class wbr 5150  β€˜cfv 6551  Ο‰com 7874   β‰Ό cdom 8966  sigAlgebracsiga 33732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-iota 6503  df-fun 6553  df-fv 6559  df-siga 33733
This theorem is referenced by:  sigagenval  33764  dmsigagen  33768  ldsysgenld  33784  pwcntmeas  33851  ddemeas  33860  mbfmcnt  33893
  Copyright terms: Public domain W3C validator