Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwsiga Structured version   Visualization version   GIF version

Theorem pwsiga 31810
Description: Any power set forms a sigma-algebra. (Contributed by Thierry Arnoux, 13-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.)
Assertion
Ref Expression
pwsiga (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))

Proof of Theorem pwsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssidd 3924 . 2 (𝑂𝑉 → 𝒫 𝑂 ⊆ 𝒫 𝑂)
2 pwidg 4535 . . 3 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
3 difss 4046 . . . . . 6 (𝑂𝑥) ⊆ 𝑂
4 elpw2g 5237 . . . . . 6 (𝑂𝑉 → ((𝑂𝑥) ∈ 𝒫 𝑂 ↔ (𝑂𝑥) ⊆ 𝑂))
53, 4mpbiri 261 . . . . 5 (𝑂𝑉 → (𝑂𝑥) ∈ 𝒫 𝑂)
65a1d 25 . . . 4 (𝑂𝑉 → (𝑥 ∈ 𝒫 𝑂 → (𝑂𝑥) ∈ 𝒫 𝑂))
76ralrimiv 3104 . . 3 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂)
8 sspwuni 5008 . . . . . . . 8 (𝑥 ⊆ 𝒫 𝑂 𝑥𝑂)
9 vuniex 7527 . . . . . . . . 9 𝑥 ∈ V
109elpw 4517 . . . . . . . 8 ( 𝑥 ∈ 𝒫 𝑂 𝑥𝑂)
118, 10bitr4i 281 . . . . . . 7 (𝑥 ⊆ 𝒫 𝑂 𝑥 ∈ 𝒫 𝑂)
1211biimpi 219 . . . . . 6 (𝑥 ⊆ 𝒫 𝑂 𝑥 ∈ 𝒫 𝑂)
1312a1d 25 . . . . 5 (𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂))
14 elpwi 4522 . . . . . 6 (𝑥 ∈ 𝒫 𝒫 𝑂𝑥 ⊆ 𝒫 𝑂)
1514imim1i 63 . . . . 5 ((𝑥 ⊆ 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)) → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))
1613, 15mp1i 13 . . . 4 (𝑂𝑉 → (𝑥 ∈ 𝒫 𝒫 𝑂 → (𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))
1716ralrimiv 3104 . . 3 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂))
182, 7, 173jca 1130 . 2 (𝑂𝑉 → (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))
19 pwexg 5271 . . 3 (𝑂𝑉 → 𝒫 𝑂 ∈ V)
20 issiga 31792 . . 3 (𝒫 𝑂 ∈ V → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))))
2119, 20syl 17 . 2 (𝑂𝑉 → (𝒫 𝑂 ∈ (sigAlgebra‘𝑂) ↔ (𝒫 𝑂 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝑂(𝑂𝑥) ∈ 𝒫 𝑂 ∧ ∀𝑥 ∈ 𝒫 𝒫 𝑂(𝑥 ≼ ω → 𝑥 ∈ 𝒫 𝑂)))))
221, 18, 21mpbir2and 713 1 (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089  wcel 2110  wral 3061  Vcvv 3408  cdif 3863  wss 3866  𝒫 cpw 4513   cuni 4819   class class class wbr 5053  cfv 6380  ωcom 7644  cdom 8624  sigAlgebracsiga 31788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388  df-siga 31789
This theorem is referenced by:  sigagenval  31820  dmsigagen  31824  ldsysgenld  31840  pwcntmeas  31907  ddemeas  31916  mbfmcnt  31947
  Copyright terms: Public domain W3C validator