MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1 Structured version   Visualization version   GIF version

Theorem wlkp1 28049
Description: Append one path segment (edge) 𝐸 from vertex (𝑃𝑁) to a vertex 𝐶 to a walk 𝐹, 𝑃 to become a walk 𝐻, 𝑄 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. Formerly proven directly for Eulerian paths (for pseudographs), see eupthp1 28580. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 6-Mar-2021.) (Proof shortened by AV, 18-Apr-2021.) (Revised by AV, 8-Apr-2024.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵𝑊)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
wlkp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
wlkp1.s (𝜑 → (Vtx‘𝑆) = 𝑉)
wlkp1.l ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
Assertion
Ref Expression
wlkp1 (𝜑𝐻(Walks‘𝑆)𝑄)

Proof of Theorem wlkp1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkp1.w . . . . . 6 (𝜑𝐹(Walks‘𝐺)𝑃)
2 wlkp1.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
32wlkf 27981 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
4 wrdf 14222 . . . . . . 7 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
5 wlkp1.n . . . . . . . . . 10 𝑁 = (♯‘𝐹)
65eqcomi 2747 . . . . . . . . 9 (♯‘𝐹) = 𝑁
76oveq2i 7286 . . . . . . . 8 (0..^(♯‘𝐹)) = (0..^𝑁)
87feq2i 6592 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼𝐹:(0..^𝑁)⟶dom 𝐼)
94, 8sylib 217 . . . . . 6 (𝐹 ∈ Word dom 𝐼𝐹:(0..^𝑁)⟶dom 𝐼)
101, 3, 93syl 18 . . . . 5 (𝜑𝐹:(0..^𝑁)⟶dom 𝐼)
115fvexi 6788 . . . . . . 7 𝑁 ∈ V
1211a1i 11 . . . . . 6 (𝜑𝑁 ∈ V)
13 wlkp1.b . . . . . . . 8 (𝜑𝐵𝑊)
14 snidg 4595 . . . . . . . 8 (𝐵𝑊𝐵 ∈ {𝐵})
1513, 14syl 17 . . . . . . 7 (𝜑𝐵 ∈ {𝐵})
16 wlkp1.e . . . . . . . 8 (𝜑𝐸 ∈ (Edg‘𝐺))
17 dmsnopg 6116 . . . . . . . 8 (𝐸 ∈ (Edg‘𝐺) → dom {⟨𝐵, 𝐸⟩} = {𝐵})
1816, 17syl 17 . . . . . . 7 (𝜑 → dom {⟨𝐵, 𝐸⟩} = {𝐵})
1915, 18eleqtrrd 2842 . . . . . 6 (𝜑𝐵 ∈ dom {⟨𝐵, 𝐸⟩})
2012, 19fsnd 6759 . . . . 5 (𝜑 → {⟨𝑁, 𝐵⟩}:{𝑁}⟶dom {⟨𝐵, 𝐸⟩})
21 fzodisjsn 13425 . . . . . 6 ((0..^𝑁) ∩ {𝑁}) = ∅
2221a1i 11 . . . . 5 (𝜑 → ((0..^𝑁) ∩ {𝑁}) = ∅)
23 fun 6636 . . . . 5 (((𝐹:(0..^𝑁)⟶dom 𝐼 ∧ {⟨𝑁, 𝐵⟩}:{𝑁}⟶dom {⟨𝐵, 𝐸⟩}) ∧ ((0..^𝑁) ∩ {𝑁}) = ∅) → (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})⟶(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
2410, 20, 22, 23syl21anc 835 . . . 4 (𝜑 → (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})⟶(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
25 wlkp1.h . . . . . 6 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
2625a1i 11 . . . . 5 (𝜑𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩}))
27 wlkp1.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
28 wlkp1.f . . . . . . . 8 (𝜑 → Fun 𝐼)
29 wlkp1.a . . . . . . . 8 (𝜑𝐼 ∈ Fin)
30 wlkp1.c . . . . . . . 8 (𝜑𝐶𝑉)
31 wlkp1.d . . . . . . . 8 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
32 wlkp1.x . . . . . . . 8 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
33 wlkp1.u . . . . . . . 8 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
3427, 2, 28, 29, 13, 30, 31, 1, 5, 16, 32, 33, 25wlkp1lem2 28042 . . . . . . 7 (𝜑 → (♯‘𝐻) = (𝑁 + 1))
3534oveq2d 7291 . . . . . 6 (𝜑 → (0..^(♯‘𝐻)) = (0..^(𝑁 + 1)))
36 wlkcl 27982 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
37 eleq1 2826 . . . . . . . . . . 11 ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) ∈ ℕ0𝑁 ∈ ℕ0))
3837eqcoms 2746 . . . . . . . . . 10 (𝑁 = (♯‘𝐹) → ((♯‘𝐹) ∈ ℕ0𝑁 ∈ ℕ0))
39 elnn0uz 12623 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
4039biimpi 215 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
4138, 40syl6bi 252 . . . . . . . . 9 (𝑁 = (♯‘𝐹) → ((♯‘𝐹) ∈ ℕ0𝑁 ∈ (ℤ‘0)))
425, 41ax-mp 5 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0𝑁 ∈ (ℤ‘0))
431, 36, 423syl 18 . . . . . . 7 (𝜑𝑁 ∈ (ℤ‘0))
44 fzosplitsn 13495 . . . . . . 7 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
4543, 44syl 17 . . . . . 6 (𝜑 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
4635, 45eqtrd 2778 . . . . 5 (𝜑 → (0..^(♯‘𝐻)) = ((0..^𝑁) ∪ {𝑁}))
4733dmeqd 5814 . . . . . 6 (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
48 dmun 5819 . . . . . 6 dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩})
4947, 48eqtrdi 2794 . . . . 5 (𝜑 → dom (iEdg‘𝑆) = (dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
5026, 46, 49feq123d 6589 . . . 4 (𝜑 → (𝐻:(0..^(♯‘𝐻))⟶dom (iEdg‘𝑆) ↔ (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})⟶(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩})))
5124, 50mpbird 256 . . 3 (𝜑𝐻:(0..^(♯‘𝐻))⟶dom (iEdg‘𝑆))
52 iswrdb 14223 . . 3 (𝐻 ∈ Word dom (iEdg‘𝑆) ↔ 𝐻:(0..^(♯‘𝐻))⟶dom (iEdg‘𝑆))
5351, 52sylibr 233 . 2 (𝜑𝐻 ∈ Word dom (iEdg‘𝑆))
5427wlkp 27983 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
551, 54syl 17 . . . . . 6 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
565oveq2i 7286 . . . . . . 7 (0...𝑁) = (0...(♯‘𝐹))
5756feq2i 6592 . . . . . 6 (𝑃:(0...𝑁)⟶𝑉𝑃:(0...(♯‘𝐹))⟶𝑉)
5855, 57sylibr 233 . . . . 5 (𝜑𝑃:(0...𝑁)⟶𝑉)
59 ovexd 7310 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ V)
6059, 30fsnd 6759 . . . . 5 (𝜑 → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶𝑉)
61 fzp1disj 13315 . . . . . 6 ((0...𝑁) ∩ {(𝑁 + 1)}) = ∅
6261a1i 11 . . . . 5 (𝜑 → ((0...𝑁) ∩ {(𝑁 + 1)}) = ∅)
63 fun 6636 . . . . 5 (((𝑃:(0...𝑁)⟶𝑉 ∧ {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶𝑉) ∧ ((0...𝑁) ∩ {(𝑁 + 1)}) = ∅) → (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((0...𝑁) ∪ {(𝑁 + 1)})⟶(𝑉𝑉))
6458, 60, 62, 63syl21anc 835 . . . 4 (𝜑 → (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((0...𝑁) ∪ {(𝑁 + 1)})⟶(𝑉𝑉))
65 fzsuc 13303 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0...(𝑁 + 1)) = ((0...𝑁) ∪ {(𝑁 + 1)}))
6643, 65syl 17 . . . . 5 (𝜑 → (0...(𝑁 + 1)) = ((0...𝑁) ∪ {(𝑁 + 1)}))
67 unidm 4086 . . . . . . 7 (𝑉𝑉) = 𝑉
6867eqcomi 2747 . . . . . 6 𝑉 = (𝑉𝑉)
6968a1i 11 . . . . 5 (𝜑𝑉 = (𝑉𝑉))
7066, 69feq23d 6595 . . . 4 (𝜑 → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(0...(𝑁 + 1))⟶𝑉 ↔ (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((0...𝑁) ∪ {(𝑁 + 1)})⟶(𝑉𝑉)))
7164, 70mpbird 256 . . 3 (𝜑 → (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(0...(𝑁 + 1))⟶𝑉)
72 wlkp1.q . . . . 5 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
7372a1i 11 . . . 4 (𝜑𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩}))
7434oveq2d 7291 . . . 4 (𝜑 → (0...(♯‘𝐻)) = (0...(𝑁 + 1)))
75 wlkp1.s . . . 4 (𝜑 → (Vtx‘𝑆) = 𝑉)
7673, 74, 75feq123d 6589 . . 3 (𝜑 → (𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(0...(𝑁 + 1))⟶𝑉))
7771, 76mpbird 256 . 2 (𝜑𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆))
78 wlkp1.l . . 3 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
7927, 2, 28, 29, 13, 30, 31, 1, 5, 16, 32, 33, 25, 72, 75, 78wlkp1lem8 28048 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))
8027, 2, 28, 29, 13, 30, 31, 1, 5, 16, 32, 33, 25, 72, 75wlkp1lem4 28044 . . 3 (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V))
81 eqid 2738 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
82 eqid 2738 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
8381, 82iswlk 27977 . . 3 ((𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V) → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))))
8480, 83syl 17 . 2 (𝜑 → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(♯‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))))
8553, 77, 79, 84mpbir3and 1341 1 (𝜑𝐻(Walks‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  if-wif 1060  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  {cpr 4563  cop 4567   class class class wbr 5074  dom cdm 5589  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  0cc0 10871  1c1 10872   + caddc 10874  0cn0 12233  cuz 12582  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  Walkscwlks 27963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-wlks 27966
This theorem is referenced by:  eupthp1  28580
  Copyright terms: Public domain W3C validator