MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dom2 Structured version   Visualization version   GIF version

Theorem dom2 8969
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by NM, 26-Oct-2003.)
Hypotheses
Ref Expression
dom2.1 (𝑥𝐴𝐶𝐵)
dom2.2 ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦))
Assertion
Ref Expression
dom2 (𝐵𝑉𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem dom2
StepHypRef Expression
1 eqid 2730 . 2 𝐴 = 𝐴
2 dom2.1 . . . 4 (𝑥𝐴𝐶𝐵)
32a1i 11 . . 3 (𝐴 = 𝐴 → (𝑥𝐴𝐶𝐵))
4 dom2.2 . . . 4 ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦))
54a1i 11 . . 3 (𝐴 = 𝐴 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
63, 5dom2d 8967 . 2 (𝐴 = 𝐴 → (𝐵𝑉𝐴𝐵))
71, 6ax-mp 5 1 (𝐵𝑉𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  cdom 8919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-dom 8923
This theorem is referenced by:  infpwfidom  9988  rpnnen1lem6  12948  rpnnen2lem12  16200  tgdom  22872  vitali  25521  rpnnen3  43028
  Copyright terms: Public domain W3C validator