![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dom2 | Structured version Visualization version GIF version |
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
dom2.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
dom2.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) |
Ref | Expression |
---|---|
dom2 | ⊢ (𝐵 ∈ 𝑉 → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2779 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | dom2.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝐴 = 𝐴 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
4 | dom2.2 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝐴 = 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) |
6 | 3, 5 | dom2d 8347 | . 2 ⊢ (𝐴 = 𝐴 → (𝐵 ∈ 𝑉 → 𝐴 ≼ 𝐵)) |
7 | 1, 6 | ax-mp 5 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 class class class wbr 4929 ≼ cdom 8304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-dom 8308 |
This theorem is referenced by: infpwfidom 9248 rpnnen1lem6 12196 rpnnen2lem12 15438 tgdom 21290 vitali 23917 rpnnen3 39022 |
Copyright terms: Public domain | W3C validator |