Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigoimp Structured version   Visualization version   GIF version

Theorem elbigoimp 48536
Description: The defining property of a function of order G(x). (Contributed by AV, 18-May-2020.)
Assertion
Ref Expression
elbigoimp ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
Distinct variable groups:   𝑥,𝐺,𝑚,𝑦   𝑚,𝐹,𝑥,𝑦   𝐴,𝑚,𝑥,𝑦

Proof of Theorem elbigoimp
StepHypRef Expression
1 simp1 1136 . 2 ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → 𝐹 ∈ (Ο‘𝐺))
2 elbigofrcl 48530 . . . . 5 (𝐹 ∈ (Ο‘𝐺) → 𝐺 ∈ (ℝ ↑pm ℝ))
3 reex 11220 . . . . . 6 ℝ ∈ V
43, 3elpm2 8888 . . . . 5 (𝐺 ∈ (ℝ ↑pm ℝ) ↔ (𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ))
52, 4sylib 218 . . . 4 (𝐹 ∈ (Ο‘𝐺) → (𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ))
653ad2ant1 1133 . . 3 ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → (𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ))
7 3simpc 1150 . . 3 ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → (𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺))
8 elbigo2 48532 . . 3 (((𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ) ∧ (𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
96, 7, 8syl2anc 584 . 2 ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
101, 9mpbid 232 1 ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2108  wral 3051  wrex 3060  wss 3926   class class class wbr 5119  dom cdm 5654  wf 6527  cfv 6531  (class class class)co 7405  pm cpm 8841  cr 11128   · cmul 11134  cle 11270  Οcbigo 48527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-ico 13368  df-bigo 48528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator