![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elbigoimp | Structured version Visualization version GIF version |
Description: The defining property of a function of order G(x). (Contributed by AV, 18-May-2020.) |
Ref | Expression |
---|---|
elbigoimp | ⊢ ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . 2 ⊢ ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → 𝐹 ∈ (Ο‘𝐺)) | |
2 | elbigofrcl 48284 | . . . . 5 ⊢ (𝐹 ∈ (Ο‘𝐺) → 𝐺 ∈ (ℝ ↑pm ℝ)) | |
3 | reex 11275 | . . . . . 6 ⊢ ℝ ∈ V | |
4 | 3, 3 | elpm2 8932 | . . . . 5 ⊢ (𝐺 ∈ (ℝ ↑pm ℝ) ↔ (𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ)) |
5 | 2, 4 | sylib 218 | . . . 4 ⊢ (𝐹 ∈ (Ο‘𝐺) → (𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ)) |
6 | 5 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → (𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ)) |
7 | 3simpc 1150 | . . 3 ⊢ ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → (𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺)) | |
8 | elbigo2 48286 | . . 3 ⊢ (((𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ) ∧ (𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) | |
9 | 6, 7, 8 | syl2anc 583 | . 2 ⊢ ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) |
10 | 1, 9 | mpbid 232 | 1 ⊢ ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑pm cpm 8885 ℝcr 11183 · cmul 11189 ≤ cle 11325 Οcbigo 48281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ico 13413 df-bigo 48282 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |