Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elbigoimp | Structured version Visualization version GIF version |
Description: The defining property of a function of order G(x). (Contributed by AV, 18-May-2020.) |
Ref | Expression |
---|---|
elbigoimp | ⊢ ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1138 | . 2 ⊢ ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → 𝐹 ∈ (Ο‘𝐺)) | |
2 | elbigofrcl 45584 | . . . . 5 ⊢ (𝐹 ∈ (Ο‘𝐺) → 𝐺 ∈ (ℝ ↑pm ℝ)) | |
3 | reex 10833 | . . . . . 6 ⊢ ℝ ∈ V | |
4 | 3, 3 | elpm2 8564 | . . . . 5 ⊢ (𝐺 ∈ (ℝ ↑pm ℝ) ↔ (𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ)) |
5 | 2, 4 | sylib 221 | . . . 4 ⊢ (𝐹 ∈ (Ο‘𝐺) → (𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ)) |
6 | 5 | 3ad2ant1 1135 | . . 3 ⊢ ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → (𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ)) |
7 | 3simpc 1152 | . . 3 ⊢ ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → (𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺)) | |
8 | elbigo2 45586 | . . 3 ⊢ (((𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ) ∧ (𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) | |
9 | 6, 7, 8 | syl2anc 587 | . 2 ⊢ ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) |
10 | 1, 9 | mpbid 235 | 1 ⊢ ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 ∈ wcel 2111 ∀wral 3062 ∃wrex 3063 ⊆ wss 3875 class class class wbr 5062 dom cdm 5560 ⟶wf 6385 ‘cfv 6389 (class class class)co 7222 ↑pm cpm 8518 ℝcr 10741 · cmul 10747 ≤ cle 10881 Οcbigo 45581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-cnex 10798 ax-resscn 10799 ax-pre-lttri 10816 ax-pre-lttrn 10817 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-op 4557 df-uni 4829 df-br 5063 df-opab 5125 df-mpt 5145 df-id 5464 df-po 5477 df-so 5478 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-ov 7225 df-oprab 7226 df-mpo 7227 df-er 8400 df-pm 8520 df-en 8636 df-dom 8637 df-sdom 8638 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-ico 12954 df-bigo 45582 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |