![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elbigoimp | Structured version Visualization version GIF version |
Description: The defining property of a function of order G(x). (Contributed by AV, 18-May-2020.) |
Ref | Expression |
---|---|
elbigoimp | β’ ((πΉ β (ΞβπΊ) β§ πΉ:π΄βΆβ β§ π΄ β dom πΊ) β βπ₯ β β βπ β β βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ¦) β€ (π Β· (πΊβπ¦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . 2 β’ ((πΉ β (ΞβπΊ) β§ πΉ:π΄βΆβ β§ π΄ β dom πΊ) β πΉ β (ΞβπΊ)) | |
2 | elbigofrcl 47324 | . . . . 5 β’ (πΉ β (ΞβπΊ) β πΊ β (β βpm β)) | |
3 | reex 11205 | . . . . . 6 β’ β β V | |
4 | 3, 3 | elpm2 8872 | . . . . 5 β’ (πΊ β (β βpm β) β (πΊ:dom πΊβΆβ β§ dom πΊ β β)) |
5 | 2, 4 | sylib 217 | . . . 4 β’ (πΉ β (ΞβπΊ) β (πΊ:dom πΊβΆβ β§ dom πΊ β β)) |
6 | 5 | 3ad2ant1 1132 | . . 3 β’ ((πΉ β (ΞβπΊ) β§ πΉ:π΄βΆβ β§ π΄ β dom πΊ) β (πΊ:dom πΊβΆβ β§ dom πΊ β β)) |
7 | 3simpc 1149 | . . 3 β’ ((πΉ β (ΞβπΊ) β§ πΉ:π΄βΆβ β§ π΄ β dom πΊ) β (πΉ:π΄βΆβ β§ π΄ β dom πΊ)) | |
8 | elbigo2 47326 | . . 3 β’ (((πΊ:dom πΊβΆβ β§ dom πΊ β β) β§ (πΉ:π΄βΆβ β§ π΄ β dom πΊ)) β (πΉ β (ΞβπΊ) β βπ₯ β β βπ β β βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ¦) β€ (π Β· (πΊβπ¦))))) | |
9 | 6, 7, 8 | syl2anc 583 | . 2 β’ ((πΉ β (ΞβπΊ) β§ πΉ:π΄βΆβ β§ π΄ β dom πΊ) β (πΉ β (ΞβπΊ) β βπ₯ β β βπ β β βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ¦) β€ (π Β· (πΊβπ¦))))) |
10 | 1, 9 | mpbid 231 | 1 β’ ((πΉ β (ΞβπΊ) β§ πΉ:π΄βΆβ β§ π΄ β dom πΊ) β βπ₯ β β βπ β β βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ¦) β€ (π Β· (πΊβπ¦)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 β wcel 2105 βwral 3060 βwrex 3069 β wss 3948 class class class wbr 5148 dom cdm 5676 βΆwf 6539 βcfv 6543 (class class class)co 7412 βpm cpm 8825 βcr 11113 Β· cmul 11119 β€ cle 11254 Ξcbigo 47321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-pre-lttri 11188 ax-pre-lttrn 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8707 df-pm 8827 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-ico 13335 df-bigo 47322 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |