Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigoimp Structured version   Visualization version   GIF version

Theorem elbigoimp 45590
Description: The defining property of a function of order G(x). (Contributed by AV, 18-May-2020.)
Assertion
Ref Expression
elbigoimp ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
Distinct variable groups:   𝑥,𝐺,𝑚,𝑦   𝑚,𝐹,𝑥,𝑦   𝐴,𝑚,𝑥,𝑦

Proof of Theorem elbigoimp
StepHypRef Expression
1 simp1 1138 . 2 ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → 𝐹 ∈ (Ο‘𝐺))
2 elbigofrcl 45584 . . . . 5 (𝐹 ∈ (Ο‘𝐺) → 𝐺 ∈ (ℝ ↑pm ℝ))
3 reex 10833 . . . . . 6 ℝ ∈ V
43, 3elpm2 8564 . . . . 5 (𝐺 ∈ (ℝ ↑pm ℝ) ↔ (𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ))
52, 4sylib 221 . . . 4 (𝐹 ∈ (Ο‘𝐺) → (𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ))
653ad2ant1 1135 . . 3 ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → (𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ))
7 3simpc 1152 . . 3 ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → (𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺))
8 elbigo2 45586 . . 3 (((𝐺:dom 𝐺⟶ℝ ∧ dom 𝐺 ⊆ ℝ) ∧ (𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
96, 7, 8syl2anc 587 . 2 ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
101, 9mpbid 235 1 ((𝐹 ∈ (Ο‘𝐺) ∧ 𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ dom 𝐺) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089  wcel 2111  wral 3062  wrex 3063  wss 3875   class class class wbr 5062  dom cdm 5560  wf 6385  cfv 6389  (class class class)co 7222  pm cpm 8518  cr 10741   · cmul 10747  cle 10881  Οcbigo 45581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5201  ax-nul 5208  ax-pow 5267  ax-pr 5331  ax-un 7532  ax-cnex 10798  ax-resscn 10799  ax-pre-lttri 10816  ax-pre-lttrn 10817
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3417  df-sbc 3704  df-csb 3821  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-nul 4247  df-if 4449  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4829  df-br 5063  df-opab 5125  df-mpt 5145  df-id 5464  df-po 5477  df-so 5478  df-xp 5566  df-rel 5567  df-cnv 5568  df-co 5569  df-dm 5570  df-rn 5571  df-res 5572  df-ima 5573  df-iota 6347  df-fun 6391  df-fn 6392  df-f 6393  df-f1 6394  df-fo 6395  df-f1o 6396  df-fv 6397  df-ov 7225  df-oprab 7226  df-mpo 7227  df-er 8400  df-pm 8520  df-en 8636  df-dom 8637  df-sdom 8638  df-pnf 10882  df-mnf 10883  df-xr 10884  df-ltxr 10885  df-le 10886  df-ico 12954  df-bigo 45582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator