MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveere Structured version   Visualization version   GIF version

Theorem fveere 27172
Description: The function value of a point is a real. (Contributed by Scott Fenton, 10-Jun-2013.)
Assertion
Ref Expression
fveere ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴𝐼) ∈ ℝ)

Proof of Theorem fveere
StepHypRef Expression
1 eleei 27168 . 2 (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ)
21ffvelrnda 6943 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴𝐼) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803  ...cfz 13168  𝔼cee 27159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-ee 27162
This theorem is referenced by:  fveecn  27173  eqeelen  27175  brbtwn2  27176  colinearalglem4  27180  colinearalg  27181  eleesub  27182  eleesubd  27183  axcgrid  27187  axsegconlem1  27188  axsegconlem2  27189  axsegconlem3  27190  axsegconlem8  27195  axsegconlem9  27196  axsegconlem10  27197  ax5seglem3a  27201  ax5seg  27209  axpasch  27212  axeuclidlem  27233  axcontlem2  27236
  Copyright terms: Public domain W3C validator