Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fveere | Structured version Visualization version GIF version |
Description: The function value of a point is a real. (Contributed by Scott Fenton, 10-Jun-2013.) |
Ref | Expression |
---|---|
fveere | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleei 27168 | . 2 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ) | |
2 | 1 | ffvelrnda 6943 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 1c1 10803 ...cfz 13168 𝔼cee 27159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-ee 27162 |
This theorem is referenced by: fveecn 27173 eqeelen 27175 brbtwn2 27176 colinearalglem4 27180 colinearalg 27181 eleesub 27182 eleesubd 27183 axcgrid 27187 axsegconlem1 27188 axsegconlem2 27189 axsegconlem3 27190 axsegconlem8 27195 axsegconlem9 27196 axsegconlem10 27197 ax5seglem3a 27201 ax5seg 27209 axpasch 27212 axeuclidlem 27233 axcontlem2 27236 |
Copyright terms: Public domain | W3C validator |