Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fveere | Structured version Visualization version GIF version |
Description: The function value of a point is a real. (Contributed by Scott Fenton, 10-Jun-2013.) |
Ref | Expression |
---|---|
fveere | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleei 26988 | . 2 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ) | |
2 | 1 | ffvelrnda 6904 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 ℝcr 10728 1c1 10730 ...cfz 13095 𝔼cee 26979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-map 8510 df-ee 26982 |
This theorem is referenced by: fveecn 26993 eqeelen 26995 brbtwn2 26996 colinearalglem4 27000 colinearalg 27001 eleesub 27002 eleesubd 27003 axcgrid 27007 axsegconlem1 27008 axsegconlem2 27009 axsegconlem3 27010 axsegconlem8 27015 axsegconlem9 27016 axsegconlem10 27017 ax5seglem3a 27021 ax5seg 27029 axpasch 27032 axeuclidlem 27053 axcontlem2 27056 |
Copyright terms: Public domain | W3C validator |