MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeefv Structured version   Visualization version   GIF version

Theorem eqeefv 28426
Description: Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013.)
Assertion
Ref Expression
eqeefv ((𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) β†’ (𝐴 = 𝐡 ↔ βˆ€π‘– ∈ (1...𝑁)(π΄β€˜π‘–) = (π΅β€˜π‘–)))
Distinct variable groups:   𝐴,𝑖   𝐡,𝑖   𝑖,𝑁

Proof of Theorem eqeefv
StepHypRef Expression
1 eleei 28420 . . 3 (𝐴 ∈ (π”Όβ€˜π‘) β†’ 𝐴:(1...𝑁)βŸΆβ„)
21ffnd 6719 . 2 (𝐴 ∈ (π”Όβ€˜π‘) β†’ 𝐴 Fn (1...𝑁))
3 eleei 28420 . . 3 (𝐡 ∈ (π”Όβ€˜π‘) β†’ 𝐡:(1...𝑁)βŸΆβ„)
43ffnd 6719 . 2 (𝐡 ∈ (π”Όβ€˜π‘) β†’ 𝐡 Fn (1...𝑁))
5 eqfnfv 7033 . 2 ((𝐴 Fn (1...𝑁) ∧ 𝐡 Fn (1...𝑁)) β†’ (𝐴 = 𝐡 ↔ βˆ€π‘– ∈ (1...𝑁)(π΄β€˜π‘–) = (π΅β€˜π‘–)))
62, 4, 5syl2an 594 1 ((𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) β†’ (𝐴 = 𝐡 ↔ βˆ€π‘– ∈ (1...𝑁)(π΄β€˜π‘–) = (π΅β€˜π‘–)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059   Fn wfn 6539  β€˜cfv 6544  (class class class)co 7413  β„cr 11113  1c1 11115  ...cfz 13490  π”Όcee 28411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8826  df-ee 28414
This theorem is referenced by:  eqeelen  28427  brbtwn2  28428  colinearalg  28433  axcgrid  28439  ax5seglem4  28455  ax5seglem5  28456  axbtwnid  28462  axeuclid  28486  axcontlem2  28488  axcontlem4  28490  axcontlem7  28493
  Copyright terms: Public domain W3C validator