MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeefv Structured version   Visualization version   GIF version

Theorem eqeefv 28830
Description: Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013.)
Assertion
Ref Expression
eqeefv ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝑁

Proof of Theorem eqeefv
StepHypRef Expression
1 eleei 28824 . . 3 (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ)
21ffnd 6689 . 2 (𝐴 ∈ (𝔼‘𝑁) → 𝐴 Fn (1...𝑁))
3 eleei 28824 . . 3 (𝐵 ∈ (𝔼‘𝑁) → 𝐵:(1...𝑁)⟶ℝ)
43ffnd 6689 . 2 (𝐵 ∈ (𝔼‘𝑁) → 𝐵 Fn (1...𝑁))
5 eqfnfv 7003 . 2 ((𝐴 Fn (1...𝑁) ∧ 𝐵 Fn (1...𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
62, 4, 5syl2an 596 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   Fn wfn 6506  cfv 6511  (class class class)co 7387  cr 11067  1c1 11069  ...cfz 13468  𝔼cee 28815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-ee 28818
This theorem is referenced by:  eqeelen  28831  brbtwn2  28832  colinearalg  28837  axcgrid  28843  ax5seglem4  28859  ax5seglem5  28860  axbtwnid  28866  axeuclid  28890  axcontlem2  28892  axcontlem4  28894  axcontlem7  28897
  Copyright terms: Public domain W3C validator