![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeefv | Structured version Visualization version GIF version |
Description: Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013.) |
Ref | Expression |
---|---|
eqeefv | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleei 26203 | . . 3 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ) | |
2 | 1 | ffnd 6283 | . 2 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝐴 Fn (1...𝑁)) |
3 | eleei 26203 | . . 3 ⊢ (𝐵 ∈ (𝔼‘𝑁) → 𝐵:(1...𝑁)⟶ℝ) | |
4 | 3 | ffnd 6283 | . 2 ⊢ (𝐵 ∈ (𝔼‘𝑁) → 𝐵 Fn (1...𝑁)) |
5 | eqfnfv 6565 | . 2 ⊢ ((𝐴 Fn (1...𝑁) ∧ 𝐵 Fn (1...𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) | |
6 | 2, 4, 5 | syl2an 589 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 Fn wfn 6122 ‘cfv 6127 (class class class)co 6910 ℝcr 10258 1c1 10260 ...cfz 12626 𝔼cee 26194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-map 8129 df-ee 26197 |
This theorem is referenced by: eqeelen 26210 brbtwn2 26211 colinearalg 26216 axcgrid 26222 ax5seglem4 26238 ax5seglem5 26239 axbtwnid 26245 axeuclid 26269 axcontlem2 26271 axcontlem4 26273 axcontlem7 26276 |
Copyright terms: Public domain | W3C validator |