Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeefv | Structured version Visualization version GIF version |
Description: Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013.) |
Ref | Expression |
---|---|
eqeefv | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleei 27265 | . . 3 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ) | |
2 | 1 | ffnd 6601 | . 2 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝐴 Fn (1...𝑁)) |
3 | eleei 27265 | . . 3 ⊢ (𝐵 ∈ (𝔼‘𝑁) → 𝐵:(1...𝑁)⟶ℝ) | |
4 | 3 | ffnd 6601 | . 2 ⊢ (𝐵 ∈ (𝔼‘𝑁) → 𝐵 Fn (1...𝑁)) |
5 | eqfnfv 6909 | . 2 ⊢ ((𝐴 Fn (1...𝑁) ∧ 𝐵 Fn (1...𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) | |
6 | 2, 4, 5 | syl2an 596 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 1c1 10872 ...cfz 13239 𝔼cee 27256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-ee 27259 |
This theorem is referenced by: eqeelen 27272 brbtwn2 27273 colinearalg 27278 axcgrid 27284 ax5seglem4 27300 ax5seglem5 27301 axbtwnid 27307 axeuclid 27331 axcontlem2 27333 axcontlem4 27335 axcontlem7 27338 |
Copyright terms: Public domain | W3C validator |