|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > eqeefv | Structured version Visualization version GIF version | ||
| Description: Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| eqeefv | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleei 28913 | . . 3 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ) | |
| 2 | 1 | ffnd 6736 | . 2 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝐴 Fn (1...𝑁)) | 
| 3 | eleei 28913 | . . 3 ⊢ (𝐵 ∈ (𝔼‘𝑁) → 𝐵:(1...𝑁)⟶ℝ) | |
| 4 | 3 | ffnd 6736 | . 2 ⊢ (𝐵 ∈ (𝔼‘𝑁) → 𝐵 Fn (1...𝑁)) | 
| 5 | eqfnfv 7050 | . 2 ⊢ ((𝐴 Fn (1...𝑁) ∧ 𝐵 Fn (1...𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) | |
| 6 | 2, 4, 5 | syl2an 596 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 Fn wfn 6555 ‘cfv 6560 (class class class)co 7432 ℝcr 11155 1c1 11157 ...cfz 13548 𝔼cee 28904 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 df-ee 28907 | 
| This theorem is referenced by: eqeelen 28920 brbtwn2 28921 colinearalg 28926 axcgrid 28932 ax5seglem4 28948 ax5seglem5 28949 axbtwnid 28955 axeuclid 28979 axcontlem2 28981 axcontlem4 28983 axcontlem7 28986 | 
| Copyright terms: Public domain | W3C validator |