![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeefv | Structured version Visualization version GIF version |
Description: Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013.) |
Ref | Expression |
---|---|
eqeefv | β’ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β (π΄ = π΅ β βπ β (1...π)(π΄βπ) = (π΅βπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleei 28420 | . . 3 β’ (π΄ β (πΌβπ) β π΄:(1...π)βΆβ) | |
2 | 1 | ffnd 6719 | . 2 β’ (π΄ β (πΌβπ) β π΄ Fn (1...π)) |
3 | eleei 28420 | . . 3 β’ (π΅ β (πΌβπ) β π΅:(1...π)βΆβ) | |
4 | 3 | ffnd 6719 | . 2 β’ (π΅ β (πΌβπ) β π΅ Fn (1...π)) |
5 | eqfnfv 7033 | . 2 β’ ((π΄ Fn (1...π) β§ π΅ Fn (1...π)) β (π΄ = π΅ β βπ β (1...π)(π΄βπ) = (π΅βπ))) | |
6 | 2, 4, 5 | syl2an 594 | 1 β’ ((π΄ β (πΌβπ) β§ π΅ β (πΌβπ)) β (π΄ = π΅ β βπ β (1...π)(π΄βπ) = (π΅βπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 Fn wfn 6539 βcfv 6544 (class class class)co 7413 βcr 11113 1c1 11115 ...cfz 13490 πΌcee 28411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8826 df-ee 28414 |
This theorem is referenced by: eqeelen 28427 brbtwn2 28428 colinearalg 28433 axcgrid 28439 ax5seglem4 28455 ax5seglem5 28456 axbtwnid 28462 axeuclid 28486 axcontlem2 28488 axcontlem4 28490 axcontlem7 28493 |
Copyright terms: Public domain | W3C validator |