![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elhomai | Structured version Visualization version GIF version |
Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
homaval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
homaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
homaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
elhomai.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐽𝑌)) |
Ref | Expression |
---|---|
elhomai | ⊢ (𝜑 → 〈𝑋, 𝑌〉(𝑋𝐻𝑌)𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2741 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌〉 = 〈𝑋, 𝑌〉) | |
2 | elhomai.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐽𝑌)) | |
3 | homarcl.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
4 | homafval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
5 | homafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
6 | homaval.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐶) | |
7 | homaval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | homaval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 3, 4, 5, 6, 7, 8 | elhoma 18099 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉(𝑋𝐻𝑌)𝐹 ↔ (〈𝑋, 𝑌〉 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌)))) |
10 | 1, 2, 9 | mpbir2and 712 | 1 ⊢ (𝜑 → 〈𝑋, 𝑌〉(𝑋𝐻𝑌)𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Hom chom 17322 Catccat 17722 Homachoma 18090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-homa 18093 |
This theorem is referenced by: elhomai2 18101 |
Copyright terms: Public domain | W3C validator |