MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elhomai Structured version   Visualization version   GIF version

Theorem elhomai 17539
Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homaval.j 𝐽 = (Hom ‘𝐶)
homaval.x (𝜑𝑋𝐵)
homaval.y (𝜑𝑌𝐵)
elhomai.f (𝜑𝐹 ∈ (𝑋𝐽𝑌))
Assertion
Ref Expression
elhomai (𝜑 → ⟨𝑋, 𝑌⟩(𝑋𝐻𝑌)𝐹)

Proof of Theorem elhomai
StepHypRef Expression
1 eqidd 2738 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ = ⟨𝑋, 𝑌⟩)
2 elhomai.f . 2 (𝜑𝐹 ∈ (𝑋𝐽𝑌))
3 homarcl.h . . 3 𝐻 = (Homa𝐶)
4 homafval.b . . 3 𝐵 = (Base‘𝐶)
5 homafval.c . . 3 (𝜑𝐶 ∈ Cat)
6 homaval.j . . 3 𝐽 = (Hom ‘𝐶)
7 homaval.x . . 3 (𝜑𝑋𝐵)
8 homaval.y . . 3 (𝜑𝑌𝐵)
93, 4, 5, 6, 7, 8elhoma 17538 . 2 (𝜑 → (⟨𝑋, 𝑌⟩(𝑋𝐻𝑌)𝐹 ↔ (⟨𝑋, 𝑌⟩ = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌))))
101, 2, 9mpbir2and 713 1 (𝜑 → ⟨𝑋, 𝑌⟩(𝑋𝐻𝑌)𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  cop 4547   class class class wbr 5053  cfv 6380  (class class class)co 7213  Basecbs 16760  Hom chom 16813  Catccat 17167  Homachoma 17529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-homa 17532
This theorem is referenced by:  elhomai2  17540
  Copyright terms: Public domain W3C validator