Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoresmbl Structured version   Visualization version   GIF version

Theorem icoresmbl 44063
Description: A closed-below, open-above real interval is measurable, when the bounds are real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
icoresmbl ran ([,) ↾ (ℝ × ℝ)) ⊆ dom vol

Proof of Theorem icoresmbl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elicores 43053 . . . . 5 (𝑥 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ 𝑥 = (𝑦[,)𝑧))
21biimpi 215 . . . 4 (𝑥 ∈ ran ([,) ↾ (ℝ × ℝ)) → ∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ 𝑥 = (𝑦[,)𝑧))
3 simpr 485 . . . . . . . 8 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ 𝑥 = (𝑦[,)𝑧)) → 𝑥 = (𝑦[,)𝑧))
4 simpl 483 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℝ)
5 rexr 11032 . . . . . . . . . . 11 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
65adantl 482 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ*)
7 icombl 24739 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ*) → (𝑦[,)𝑧) ∈ dom vol)
84, 6, 7syl2anc 584 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦[,)𝑧) ∈ dom vol)
98adantr 481 . . . . . . . 8 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ 𝑥 = (𝑦[,)𝑧)) → (𝑦[,)𝑧) ∈ dom vol)
103, 9eqeltrd 2841 . . . . . . 7 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ 𝑥 = (𝑦[,)𝑧)) → 𝑥 ∈ dom vol)
1110rexlimdva2 3218 . . . . . 6 (𝑦 ∈ ℝ → (∃𝑧 ∈ ℝ 𝑥 = (𝑦[,)𝑧) → 𝑥 ∈ dom vol))
1211rexlimiv 3211 . . . . 5 (∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ 𝑥 = (𝑦[,)𝑧) → 𝑥 ∈ dom vol)
1312a1i 11 . . . 4 (𝑥 ∈ ran ([,) ↾ (ℝ × ℝ)) → (∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ 𝑥 = (𝑦[,)𝑧) → 𝑥 ∈ dom vol))
142, 13mpd 15 . . 3 (𝑥 ∈ ran ([,) ↾ (ℝ × ℝ)) → 𝑥 ∈ dom vol)
1514rgen 3076 . 2 𝑥 ∈ ran ([,) ↾ (ℝ × ℝ))𝑥 ∈ dom vol
16 dfss3 3914 . 2 (ran ([,) ↾ (ℝ × ℝ)) ⊆ dom vol ↔ ∀𝑥 ∈ ran ([,) ↾ (ℝ × ℝ))𝑥 ∈ dom vol)
1715, 16mpbir 230 1 ran ([,) ↾ (ℝ × ℝ)) ⊆ dom vol
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  wrex 3067  wss 3892   × cxp 5588  dom cdm 5590  ran crn 5591  cres 5592  (class class class)co 7272  cr 10881  *cxr 11019  [,)cico 13092  volcvol 24638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-inf2 9387  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-of 7528  df-om 7708  df-1st 7825  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-2o 8290  df-er 8490  df-map 8609  df-pm 8610  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-sup 9189  df-inf 9190  df-oi 9257  df-dju 9670  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-n0 12245  df-z 12331  df-uz 12594  df-q 12700  df-rp 12742  df-xadd 12860  df-ioo 13094  df-ico 13096  df-icc 13097  df-fz 13251  df-fzo 13394  df-fl 13523  df-seq 13733  df-exp 13794  df-hash 14056  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-clim 15208  df-rlim 15209  df-sum 15409  df-xmet 20601  df-met 20602  df-ovol 24639  df-vol 24640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator