| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ge0lere | Structured version Visualization version GIF version | ||
| Description: A nonnegative extended Real number smaller than or equal to a Real number, is a Real number. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| ge0lere.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ge0lere.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
| ge0lere.l | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| ge0lere | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ge0lere.b | . 2 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
| 2 | iccssxr 13391 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 3 | 2, 1 | sselid 3944 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 4 | pnfxr 11228 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 6 | ge0lere.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 7 | 6 | rexrd 11224 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 8 | ge0lere.l | . . . 4 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
| 9 | 6 | ltpnfd 13081 | . . . 4 ⊢ (𝜑 → 𝐴 < +∞) |
| 10 | 3, 7, 5, 8, 9 | xrlelttrd 13120 | . . 3 ⊢ (𝜑 → 𝐵 < +∞) |
| 11 | 3, 5, 10 | xrltned 45353 | . 2 ⊢ (𝜑 → 𝐵 ≠ +∞) |
| 12 | ge0xrre 45529 | . 2 ⊢ ((𝐵 ∈ (0[,]+∞) ∧ 𝐵 ≠ +∞) → 𝐵 ∈ ℝ) | |
| 13 | 1, 11, 12 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 ≤ cle 11209 [,]cicc 13309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ico 13312 df-icc 13313 |
| This theorem is referenced by: hspmbllem2 46625 hspmbllem3 46626 |
| Copyright terms: Public domain | W3C validator |