| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ge0lere | Structured version Visualization version GIF version | ||
| Description: A nonnegative extended Real number smaller than or equal to a Real number, is a Real number. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| ge0lere.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ge0lere.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
| ge0lere.l | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| ge0lere | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ge0lere.b | . 2 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
| 2 | iccssxr 13325 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 3 | 2, 1 | sselid 3927 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 4 | pnfxr 11161 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 6 | ge0lere.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 7 | 6 | rexrd 11157 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 8 | ge0lere.l | . . . 4 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
| 9 | 6 | ltpnfd 13015 | . . . 4 ⊢ (𝜑 → 𝐴 < +∞) |
| 10 | 3, 7, 5, 8, 9 | xrlelttrd 13054 | . . 3 ⊢ (𝜑 → 𝐵 < +∞) |
| 11 | 3, 5, 10 | xrltned 45396 | . 2 ⊢ (𝜑 → 𝐵 ≠ +∞) |
| 12 | ge0xrre 45571 | . 2 ⊢ ((𝐵 ∈ (0[,]+∞) ∧ 𝐵 ≠ +∞) → 𝐵 ∈ ℝ) | |
| 13 | 1, 11, 12 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5086 (class class class)co 7341 ℝcr 11000 0cc0 11001 +∞cpnf 11138 ℝ*cxr 11140 ≤ cle 11142 [,]cicc 13243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-addrcl 11062 ax-rnegex 11072 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-ico 13246 df-icc 13247 |
| This theorem is referenced by: hspmbllem2 46665 hspmbllem3 46666 |
| Copyright terms: Public domain | W3C validator |