![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ge0lere | Structured version Visualization version GIF version |
Description: A nonnegative extended Real number smaller than or equal to a Real number, is a Real number. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
ge0lere.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ge0lere.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
ge0lere.l | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
Ref | Expression |
---|---|
ge0lere | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ge0lere.b | . 2 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
2 | iccssxr 12505 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
3 | 2, 1 | sseldi 3796 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
4 | pnfxr 10382 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
6 | ge0lere.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
7 | 6 | rexrd 10378 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
8 | ge0lere.l | . . . 4 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
9 | 6 | ltpnfd 12202 | . . . 4 ⊢ (𝜑 → 𝐴 < +∞) |
10 | 3, 7, 5, 8, 9 | xrlelttrd 12240 | . . 3 ⊢ (𝜑 → 𝐵 < +∞) |
11 | 3, 5, 10 | xrltned 40317 | . 2 ⊢ (𝜑 → 𝐵 ≠ +∞) |
12 | ge0xrre 40502 | . 2 ⊢ ((𝐵 ∈ (0[,]+∞) ∧ 𝐵 ≠ +∞) → 𝐵 ∈ ℝ) | |
13 | 1, 11, 12 | syl2anc 580 | 1 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ≠ wne 2971 class class class wbr 4843 (class class class)co 6878 ℝcr 10223 0cc0 10224 +∞cpnf 10360 ℝ*cxr 10362 ≤ cle 10364 [,]cicc 12427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-addrcl 10285 ax-rnegex 10295 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-ico 12430 df-icc 12431 |
This theorem is referenced by: hspmbllem2 41587 hspmbllem3 41588 |
Copyright terms: Public domain | W3C validator |