Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ge0lere Structured version   Visualization version   GIF version

Theorem ge0lere 45485
Description: A nonnegative extended Real number smaller than or equal to a Real number, is a Real number. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ge0lere.a (𝜑𝐴 ∈ ℝ)
ge0lere.b (𝜑𝐵 ∈ (0[,]+∞))
ge0lere.l (𝜑𝐵𝐴)
Assertion
Ref Expression
ge0lere (𝜑𝐵 ∈ ℝ)

Proof of Theorem ge0lere
StepHypRef Expression
1 ge0lere.b . 2 (𝜑𝐵 ∈ (0[,]+∞))
2 iccssxr 13467 . . . 4 (0[,]+∞) ⊆ ℝ*
32, 1sselid 3993 . . 3 (𝜑𝐵 ∈ ℝ*)
4 pnfxr 11313 . . . 4 +∞ ∈ ℝ*
54a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
6 ge0lere.a . . . . 5 (𝜑𝐴 ∈ ℝ)
76rexrd 11309 . . . 4 (𝜑𝐴 ∈ ℝ*)
8 ge0lere.l . . . 4 (𝜑𝐵𝐴)
96ltpnfd 13161 . . . 4 (𝜑𝐴 < +∞)
103, 7, 5, 8, 9xrlelttrd 13199 . . 3 (𝜑𝐵 < +∞)
113, 5, 10xrltned 45307 . 2 (𝜑𝐵 ≠ +∞)
12 ge0xrre 45484 . 2 ((𝐵 ∈ (0[,]+∞) ∧ 𝐵 ≠ +∞) → 𝐵 ∈ ℝ)
131, 11, 12syl2anc 584 1 (𝜑𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wne 2938   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153  +∞cpnf 11290  *cxr 11292  cle 11294  [,]cicc 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-addrcl 11214  ax-rnegex 11224  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-ico 13390  df-icc 13391
This theorem is referenced by:  hspmbllem2  46583  hspmbllem3  46584
  Copyright terms: Public domain W3C validator