Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ge0lere Structured version   Visualization version   GIF version

Theorem ge0lere 44245
Description: A nonnegative extended Real number smaller than or equal to a Real number, is a Real number. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ge0lere.a (𝜑𝐴 ∈ ℝ)
ge0lere.b (𝜑𝐵 ∈ (0[,]+∞))
ge0lere.l (𝜑𝐵𝐴)
Assertion
Ref Expression
ge0lere (𝜑𝐵 ∈ ℝ)

Proof of Theorem ge0lere
StepHypRef Expression
1 ge0lere.b . 2 (𝜑𝐵 ∈ (0[,]+∞))
2 iccssxr 13407 . . . 4 (0[,]+∞) ⊆ ℝ*
32, 1sselid 3981 . . 3 (𝜑𝐵 ∈ ℝ*)
4 pnfxr 11268 . . . 4 +∞ ∈ ℝ*
54a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
6 ge0lere.a . . . . 5 (𝜑𝐴 ∈ ℝ)
76rexrd 11264 . . . 4 (𝜑𝐴 ∈ ℝ*)
8 ge0lere.l . . . 4 (𝜑𝐵𝐴)
96ltpnfd 13101 . . . 4 (𝜑𝐴 < +∞)
103, 7, 5, 8, 9xrlelttrd 13139 . . 3 (𝜑𝐵 < +∞)
113, 5, 10xrltned 44067 . 2 (𝜑𝐵 ≠ +∞)
12 ge0xrre 44244 . 2 ((𝐵 ∈ (0[,]+∞) ∧ 𝐵 ≠ +∞) → 𝐵 ∈ ℝ)
131, 11, 12syl2anc 585 1 (𝜑𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wne 2941   class class class wbr 5149  (class class class)co 7409  cr 11109  0cc0 11110  +∞cpnf 11245  *cxr 11247  cle 11249  [,]cicc 13327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-addrcl 11171  ax-rnegex 11181  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-ico 13330  df-icc 13331
This theorem is referenced by:  hspmbllem2  45343  hspmbllem3  45344
  Copyright terms: Public domain W3C validator