Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ge0lere Structured version   Visualization version   GIF version

Theorem ge0lere 40503
Description: A nonnegative extended Real number smaller than or equal to a Real number, is a Real number. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ge0lere.a (𝜑𝐴 ∈ ℝ)
ge0lere.b (𝜑𝐵 ∈ (0[,]+∞))
ge0lere.l (𝜑𝐵𝐴)
Assertion
Ref Expression
ge0lere (𝜑𝐵 ∈ ℝ)

Proof of Theorem ge0lere
StepHypRef Expression
1 ge0lere.b . 2 (𝜑𝐵 ∈ (0[,]+∞))
2 iccssxr 12505 . . . 4 (0[,]+∞) ⊆ ℝ*
32, 1sseldi 3796 . . 3 (𝜑𝐵 ∈ ℝ*)
4 pnfxr 10382 . . . 4 +∞ ∈ ℝ*
54a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
6 ge0lere.a . . . . 5 (𝜑𝐴 ∈ ℝ)
76rexrd 10378 . . . 4 (𝜑𝐴 ∈ ℝ*)
8 ge0lere.l . . . 4 (𝜑𝐵𝐴)
96ltpnfd 12202 . . . 4 (𝜑𝐴 < +∞)
103, 7, 5, 8, 9xrlelttrd 12240 . . 3 (𝜑𝐵 < +∞)
113, 5, 10xrltned 40317 . 2 (𝜑𝐵 ≠ +∞)
12 ge0xrre 40502 . 2 ((𝐵 ∈ (0[,]+∞) ∧ 𝐵 ≠ +∞) → 𝐵 ∈ ℝ)
131, 11, 12syl2anc 580 1 (𝜑𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157  wne 2971   class class class wbr 4843  (class class class)co 6878  cr 10223  0cc0 10224  +∞cpnf 10360  *cxr 10362  cle 10364  [,]cicc 12427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-addrcl 10285  ax-rnegex 10295  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-1st 7401  df-2nd 7402  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-ico 12430  df-icc 12431
This theorem is referenced by:  hspmbllem2  41587  hspmbllem3  41588
  Copyright terms: Public domain W3C validator