![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpmap | Structured version Visualization version GIF version |
Description: Member of a projective map. (Contributed by NM, 27-Jan-2012.) |
Ref | Expression |
---|---|
pmapfval.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapfval.l | ⊢ ≤ = (le‘𝐾) |
pmapfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapfval.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
elpmap | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∈ (𝑀‘𝑋) ↔ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pmapfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | pmapfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | pmapfval.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | 1, 2, 3, 4 | pmapval 39225 | . . 3 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑥 ∈ 𝐴 ∣ 𝑥 ≤ 𝑋}) |
6 | 5 | eleq2d 2815 | . 2 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∈ (𝑀‘𝑋) ↔ 𝑃 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 ≤ 𝑋})) |
7 | breq1 5146 | . . 3 ⊢ (𝑥 = 𝑃 → (𝑥 ≤ 𝑋 ↔ 𝑃 ≤ 𝑋)) | |
8 | 7 | elrab 3681 | . 2 ⊢ (𝑃 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 ≤ 𝑋} ↔ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑋)) |
9 | 6, 8 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∈ (𝑀‘𝑋) ↔ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {crab 3428 class class class wbr 5143 ‘cfv 6543 Basecbs 17174 lecple 17234 Atomscatm 38730 pmapcpmap 38965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-pmap 38972 |
This theorem is referenced by: pmapjoin 39320 pmapjat1 39321 |
Copyright terms: Public domain | W3C validator |