Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpmap | Structured version Visualization version GIF version |
Description: Member of a projective map. (Contributed by NM, 27-Jan-2012.) |
Ref | Expression |
---|---|
pmapfval.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapfval.l | ⊢ ≤ = (le‘𝐾) |
pmapfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapfval.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
elpmap | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∈ (𝑀‘𝑋) ↔ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pmapfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | pmapfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | pmapfval.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | 1, 2, 3, 4 | pmapval 37394 | . . 3 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑥 ∈ 𝐴 ∣ 𝑥 ≤ 𝑋}) |
6 | 5 | eleq2d 2818 | . 2 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∈ (𝑀‘𝑋) ↔ 𝑃 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 ≤ 𝑋})) |
7 | breq1 5033 | . . 3 ⊢ (𝑥 = 𝑃 → (𝑥 ≤ 𝑋 ↔ 𝑃 ≤ 𝑋)) | |
8 | 7 | elrab 3588 | . 2 ⊢ (𝑃 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 ≤ 𝑋} ↔ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑋)) |
9 | 6, 8 | bitrdi 290 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∈ (𝑀‘𝑋) ↔ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 {crab 3057 class class class wbr 5030 ‘cfv 6339 Basecbs 16586 lecple 16675 Atomscatm 36900 pmapcpmap 37134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-pmap 37141 |
This theorem is referenced by: pmapjoin 37489 pmapjat1 37490 |
Copyright terms: Public domain | W3C validator |