| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpmap | Structured version Visualization version GIF version | ||
| Description: Member of a projective map. (Contributed by NM, 27-Jan-2012.) |
| Ref | Expression |
|---|---|
| pmapfval.b | ⊢ 𝐵 = (Base‘𝐾) |
| pmapfval.l | ⊢ ≤ = (le‘𝐾) |
| pmapfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pmapfval.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| elpmap | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∈ (𝑀‘𝑋) ↔ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | pmapfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | pmapfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | pmapfval.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 5 | 1, 2, 3, 4 | pmapval 39722 | . . 3 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑥 ∈ 𝐴 ∣ 𝑥 ≤ 𝑋}) |
| 6 | 5 | eleq2d 2820 | . 2 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∈ (𝑀‘𝑋) ↔ 𝑃 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 ≤ 𝑋})) |
| 7 | breq1 5122 | . . 3 ⊢ (𝑥 = 𝑃 → (𝑥 ≤ 𝑋 ↔ 𝑃 ≤ 𝑋)) | |
| 8 | 7 | elrab 3671 | . 2 ⊢ (𝑃 ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 ≤ 𝑋} ↔ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑋)) |
| 9 | 6, 8 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∈ (𝑀‘𝑋) ↔ (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 class class class wbr 5119 ‘cfv 6530 Basecbs 17226 lecple 17276 Atomscatm 39227 pmapcpmap 39462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-pmap 39469 |
| This theorem is referenced by: pmapjoin 39817 pmapjat1 39818 |
| Copyright terms: Public domain | W3C validator |