Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpmap Structured version   Visualization version   GIF version

Theorem elpmap 39723
Description: Member of a projective map. (Contributed by NM, 27-Jan-2012.)
Hypotheses
Ref Expression
pmapfval.b 𝐵 = (Base‘𝐾)
pmapfval.l = (le‘𝐾)
pmapfval.a 𝐴 = (Atoms‘𝐾)
pmapfval.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
elpmap ((𝐾𝐶𝑋𝐵) → (𝑃 ∈ (𝑀𝑋) ↔ (𝑃𝐴𝑃 𝑋)))

Proof of Theorem elpmap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pmapfval.b . . . 4 𝐵 = (Base‘𝐾)
2 pmapfval.l . . . 4 = (le‘𝐾)
3 pmapfval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 pmapfval.m . . . 4 𝑀 = (pmap‘𝐾)
51, 2, 3, 4pmapval 39722 . . 3 ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) = {𝑥𝐴𝑥 𝑋})
65eleq2d 2820 . 2 ((𝐾𝐶𝑋𝐵) → (𝑃 ∈ (𝑀𝑋) ↔ 𝑃 ∈ {𝑥𝐴𝑥 𝑋}))
7 breq1 5122 . . 3 (𝑥 = 𝑃 → (𝑥 𝑋𝑃 𝑋))
87elrab 3671 . 2 (𝑃 ∈ {𝑥𝐴𝑥 𝑋} ↔ (𝑃𝐴𝑃 𝑋))
96, 8bitrdi 287 1 ((𝐾𝐶𝑋𝐵) → (𝑃 ∈ (𝑀𝑋) ↔ (𝑃𝐴𝑃 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {crab 3415   class class class wbr 5119  cfv 6530  Basecbs 17226  lecple 17276  Atomscatm 39227  pmapcpmap 39462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-pmap 39469
This theorem is referenced by:  pmapjoin  39817  pmapjat1  39818
  Copyright terms: Public domain W3C validator