Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpmap Structured version   Visualization version   GIF version

Theorem elpmap 38629
Description: Member of a projective map. (Contributed by NM, 27-Jan-2012.)
Hypotheses
Ref Expression
pmapfval.b 𝐡 = (Baseβ€˜πΎ)
pmapfval.l ≀ = (leβ€˜πΎ)
pmapfval.a 𝐴 = (Atomsβ€˜πΎ)
pmapfval.m 𝑀 = (pmapβ€˜πΎ)
Assertion
Ref Expression
elpmap ((𝐾 ∈ 𝐢 ∧ 𝑋 ∈ 𝐡) β†’ (𝑃 ∈ (π‘€β€˜π‘‹) ↔ (𝑃 ∈ 𝐴 ∧ 𝑃 ≀ 𝑋)))

Proof of Theorem elpmap
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 pmapfval.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 pmapfval.l . . . 4 ≀ = (leβ€˜πΎ)
3 pmapfval.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
4 pmapfval.m . . . 4 𝑀 = (pmapβ€˜πΎ)
51, 2, 3, 4pmapval 38628 . . 3 ((𝐾 ∈ 𝐢 ∧ 𝑋 ∈ 𝐡) β†’ (π‘€β€˜π‘‹) = {π‘₯ ∈ 𝐴 ∣ π‘₯ ≀ 𝑋})
65eleq2d 2820 . 2 ((𝐾 ∈ 𝐢 ∧ 𝑋 ∈ 𝐡) β†’ (𝑃 ∈ (π‘€β€˜π‘‹) ↔ 𝑃 ∈ {π‘₯ ∈ 𝐴 ∣ π‘₯ ≀ 𝑋}))
7 breq1 5152 . . 3 (π‘₯ = 𝑃 β†’ (π‘₯ ≀ 𝑋 ↔ 𝑃 ≀ 𝑋))
87elrab 3684 . 2 (𝑃 ∈ {π‘₯ ∈ 𝐴 ∣ π‘₯ ≀ 𝑋} ↔ (𝑃 ∈ 𝐴 ∧ 𝑃 ≀ 𝑋))
96, 8bitrdi 287 1 ((𝐾 ∈ 𝐢 ∧ 𝑋 ∈ 𝐡) β†’ (𝑃 ∈ (π‘€β€˜π‘‹) ↔ (𝑃 ∈ 𝐴 ∧ 𝑃 ≀ 𝑋)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  {crab 3433   class class class wbr 5149  β€˜cfv 6544  Basecbs 17144  lecple 17204  Atomscatm 38133  pmapcpmap 38368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-pmap 38375
This theorem is referenced by:  pmapjoin  38723  pmapjat1  38724
  Copyright terms: Public domain W3C validator