![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapval | Structured version Visualization version GIF version |
Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.) |
Ref | Expression |
---|---|
pmapfval.b | β’ π΅ = (BaseβπΎ) |
pmapfval.l | β’ β€ = (leβπΎ) |
pmapfval.a | β’ π΄ = (AtomsβπΎ) |
pmapfval.m | β’ π = (pmapβπΎ) |
Ref | Expression |
---|---|
pmapval | β’ ((πΎ β πΆ β§ π β π΅) β (πβπ) = {π β π΄ β£ π β€ π}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapfval.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | pmapfval.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | pmapfval.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
4 | pmapfval.m | . . . 4 β’ π = (pmapβπΎ) | |
5 | 1, 2, 3, 4 | pmapfval 39093 | . . 3 β’ (πΎ β πΆ β π = (π₯ β π΅ β¦ {π β π΄ β£ π β€ π₯})) |
6 | 5 | fveq1d 6893 | . 2 β’ (πΎ β πΆ β (πβπ) = ((π₯ β π΅ β¦ {π β π΄ β£ π β€ π₯})βπ)) |
7 | breq2 5152 | . . . 4 β’ (π₯ = π β (π β€ π₯ β π β€ π)) | |
8 | 7 | rabbidv 3439 | . . 3 β’ (π₯ = π β {π β π΄ β£ π β€ π₯} = {π β π΄ β£ π β€ π}) |
9 | eqid 2731 | . . 3 β’ (π₯ β π΅ β¦ {π β π΄ β£ π β€ π₯}) = (π₯ β π΅ β¦ {π β π΄ β£ π β€ π₯}) | |
10 | 3 | fvexi 6905 | . . . 4 β’ π΄ β V |
11 | 10 | rabex 5332 | . . 3 β’ {π β π΄ β£ π β€ π} β V |
12 | 8, 9, 11 | fvmpt 6998 | . 2 β’ (π β π΅ β ((π₯ β π΅ β¦ {π β π΄ β£ π β€ π₯})βπ) = {π β π΄ β£ π β€ π}) |
13 | 6, 12 | sylan9eq 2791 | 1 β’ ((πΎ β πΆ β§ π β π΅) β (πβπ) = {π β π΄ β£ π β€ π}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 {crab 3431 class class class wbr 5148 β¦ cmpt 5231 βcfv 6543 Basecbs 17151 lecple 17211 Atomscatm 38599 pmapcpmap 38834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-pmap 38841 |
This theorem is referenced by: elpmap 39095 pmapssat 39096 pmaple 39098 pmapat 39100 pmap0 39102 pmap1N 39104 pmapsub 39105 pmapglbx 39106 isline2 39111 linepmap 39112 polpmapN 39249 2polssN 39252 pmaplubN 39261 |
Copyright terms: Public domain | W3C validator |