Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapval Structured version   Visualization version   GIF version

Theorem pmapval 39094
Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
pmapfval.b 𝐡 = (Baseβ€˜πΎ)
pmapfval.l ≀ = (leβ€˜πΎ)
pmapfval.a 𝐴 = (Atomsβ€˜πΎ)
pmapfval.m 𝑀 = (pmapβ€˜πΎ)
Assertion
Ref Expression
pmapval ((𝐾 ∈ 𝐢 ∧ 𝑋 ∈ 𝐡) β†’ (π‘€β€˜π‘‹) = {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ 𝑋})
Distinct variable groups:   𝐴,π‘Ž   𝐾,π‘Ž   𝑋,π‘Ž
Allowed substitution hints:   𝐡(π‘Ž)   𝐢(π‘Ž)   ≀ (π‘Ž)   𝑀(π‘Ž)

Proof of Theorem pmapval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 pmapfval.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 pmapfval.l . . . 4 ≀ = (leβ€˜πΎ)
3 pmapfval.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
4 pmapfval.m . . . 4 𝑀 = (pmapβ€˜πΎ)
51, 2, 3, 4pmapfval 39093 . . 3 (𝐾 ∈ 𝐢 β†’ 𝑀 = (π‘₯ ∈ 𝐡 ↦ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯}))
65fveq1d 6893 . 2 (𝐾 ∈ 𝐢 β†’ (π‘€β€˜π‘‹) = ((π‘₯ ∈ 𝐡 ↦ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯})β€˜π‘‹))
7 breq2 5152 . . . 4 (π‘₯ = 𝑋 β†’ (π‘Ž ≀ π‘₯ ↔ π‘Ž ≀ 𝑋))
87rabbidv 3439 . . 3 (π‘₯ = 𝑋 β†’ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯} = {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ 𝑋})
9 eqid 2731 . . 3 (π‘₯ ∈ 𝐡 ↦ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯}) = (π‘₯ ∈ 𝐡 ↦ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯})
103fvexi 6905 . . . 4 𝐴 ∈ V
1110rabex 5332 . . 3 {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ 𝑋} ∈ V
128, 9, 11fvmpt 6998 . 2 (𝑋 ∈ 𝐡 β†’ ((π‘₯ ∈ 𝐡 ↦ {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ π‘₯})β€˜π‘‹) = {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ 𝑋})
136, 12sylan9eq 2791 1 ((𝐾 ∈ 𝐢 ∧ 𝑋 ∈ 𝐡) β†’ (π‘€β€˜π‘‹) = {π‘Ž ∈ 𝐴 ∣ π‘Ž ≀ 𝑋})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  {crab 3431   class class class wbr 5148   ↦ cmpt 5231  β€˜cfv 6543  Basecbs 17151  lecple 17211  Atomscatm 38599  pmapcpmap 38834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-pmap 38841
This theorem is referenced by:  elpmap  39095  pmapssat  39096  pmaple  39098  pmapat  39100  pmap0  39102  pmap1N  39104  pmapsub  39105  pmapglbx  39106  isline2  39111  linepmap  39112  polpmapN  39249  2polssN  39252  pmaplubN  39261
  Copyright terms: Public domain W3C validator