| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapval | Structured version Visualization version GIF version | ||
| Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.) |
| Ref | Expression |
|---|---|
| pmapfval.b | ⊢ 𝐵 = (Base‘𝐾) |
| pmapfval.l | ⊢ ≤ = (le‘𝐾) |
| pmapfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pmapfval.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmapval | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | pmapfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | pmapfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | pmapfval.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 5 | 1, 2, 3, 4 | pmapfval 39780 | . . 3 ⊢ (𝐾 ∈ 𝐶 → 𝑀 = (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})) |
| 6 | 5 | fveq1d 6883 | . 2 ⊢ (𝐾 ∈ 𝐶 → (𝑀‘𝑋) = ((𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})‘𝑋)) |
| 7 | breq2 5128 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑎 ≤ 𝑥 ↔ 𝑎 ≤ 𝑋)) | |
| 8 | 7 | rabbidv 3428 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥} = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) |
| 9 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥}) = (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥}) | |
| 10 | 3 | fvexi 6895 | . . . 4 ⊢ 𝐴 ∈ V |
| 11 | 10 | rabex 5314 | . . 3 ⊢ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋} ∈ V |
| 12 | 8, 9, 11 | fvmpt 6991 | . 2 ⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})‘𝑋) = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) |
| 13 | 6, 12 | sylan9eq 2791 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 class class class wbr 5124 ↦ cmpt 5206 ‘cfv 6536 Basecbs 17233 lecple 17283 Atomscatm 39286 pmapcpmap 39521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-pmap 39528 |
| This theorem is referenced by: elpmap 39782 pmapssat 39783 pmaple 39785 pmapat 39787 pmap0 39789 pmap1N 39791 pmapsub 39792 pmapglbx 39793 isline2 39798 linepmap 39799 polpmapN 39936 2polssN 39939 pmaplubN 39948 |
| Copyright terms: Public domain | W3C validator |