Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapval | Structured version Visualization version GIF version |
Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.) |
Ref | Expression |
---|---|
pmapfval.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapfval.l | ⊢ ≤ = (le‘𝐾) |
pmapfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapfval.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapval | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pmapfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | pmapfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | pmapfval.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | 1, 2, 3, 4 | pmapfval 37770 | . . 3 ⊢ (𝐾 ∈ 𝐶 → 𝑀 = (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})) |
6 | 5 | fveq1d 6776 | . 2 ⊢ (𝐾 ∈ 𝐶 → (𝑀‘𝑋) = ((𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})‘𝑋)) |
7 | breq2 5078 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑎 ≤ 𝑥 ↔ 𝑎 ≤ 𝑋)) | |
8 | 7 | rabbidv 3414 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥} = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) |
9 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥}) = (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥}) | |
10 | 3 | fvexi 6788 | . . . 4 ⊢ 𝐴 ∈ V |
11 | 10 | rabex 5256 | . . 3 ⊢ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋} ∈ V |
12 | 8, 9, 11 | fvmpt 6875 | . 2 ⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})‘𝑋) = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) |
13 | 6, 12 | sylan9eq 2798 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 Basecbs 16912 lecple 16969 Atomscatm 37277 pmapcpmap 37511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-pmap 37518 |
This theorem is referenced by: elpmap 37772 pmapssat 37773 pmaple 37775 pmapat 37777 pmap0 37779 pmap1N 37781 pmapsub 37782 pmapglbx 37783 isline2 37788 linepmap 37789 polpmapN 37926 2polssN 37929 pmaplubN 37938 |
Copyright terms: Public domain | W3C validator |