|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapval | Structured version Visualization version GIF version | ||
| Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| pmapfval.b | ⊢ 𝐵 = (Base‘𝐾) | 
| pmapfval.l | ⊢ ≤ = (le‘𝐾) | 
| pmapfval.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| pmapfval.m | ⊢ 𝑀 = (pmap‘𝐾) | 
| Ref | Expression | 
|---|---|
| pmapval | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pmapfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | pmapfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | pmapfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | pmapfval.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 5 | 1, 2, 3, 4 | pmapfval 39759 | . . 3 ⊢ (𝐾 ∈ 𝐶 → 𝑀 = (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})) | 
| 6 | 5 | fveq1d 6907 | . 2 ⊢ (𝐾 ∈ 𝐶 → (𝑀‘𝑋) = ((𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})‘𝑋)) | 
| 7 | breq2 5146 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑎 ≤ 𝑥 ↔ 𝑎 ≤ 𝑋)) | |
| 8 | 7 | rabbidv 3443 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥} = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) | 
| 9 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥}) = (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥}) | |
| 10 | 3 | fvexi 6919 | . . . 4 ⊢ 𝐴 ∈ V | 
| 11 | 10 | rabex 5338 | . . 3 ⊢ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋} ∈ V | 
| 12 | 8, 9, 11 | fvmpt 7015 | . 2 ⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})‘𝑋) = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) | 
| 13 | 6, 12 | sylan9eq 2796 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3435 class class class wbr 5142 ↦ cmpt 5224 ‘cfv 6560 Basecbs 17248 lecple 17305 Atomscatm 39265 pmapcpmap 39500 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-pmap 39507 | 
| This theorem is referenced by: elpmap 39761 pmapssat 39762 pmaple 39764 pmapat 39766 pmap0 39768 pmap1N 39770 pmapsub 39771 pmapglbx 39772 isline2 39777 linepmap 39778 polpmapN 39915 2polssN 39918 pmaplubN 39927 | 
| Copyright terms: Public domain | W3C validator |