![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapval | Structured version Visualization version GIF version |
Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.) |
Ref | Expression |
---|---|
pmapfval.b | β’ π΅ = (BaseβπΎ) |
pmapfval.l | β’ β€ = (leβπΎ) |
pmapfval.a | β’ π΄ = (AtomsβπΎ) |
pmapfval.m | β’ π = (pmapβπΎ) |
Ref | Expression |
---|---|
pmapval | β’ ((πΎ β πΆ β§ π β π΅) β (πβπ) = {π β π΄ β£ π β€ π}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapfval.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | pmapfval.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | pmapfval.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
4 | pmapfval.m | . . . 4 β’ π = (pmapβπΎ) | |
5 | 1, 2, 3, 4 | pmapfval 38615 | . . 3 β’ (πΎ β πΆ β π = (π₯ β π΅ β¦ {π β π΄ β£ π β€ π₯})) |
6 | 5 | fveq1d 6890 | . 2 β’ (πΎ β πΆ β (πβπ) = ((π₯ β π΅ β¦ {π β π΄ β£ π β€ π₯})βπ)) |
7 | breq2 5151 | . . . 4 β’ (π₯ = π β (π β€ π₯ β π β€ π)) | |
8 | 7 | rabbidv 3440 | . . 3 β’ (π₯ = π β {π β π΄ β£ π β€ π₯} = {π β π΄ β£ π β€ π}) |
9 | eqid 2732 | . . 3 β’ (π₯ β π΅ β¦ {π β π΄ β£ π β€ π₯}) = (π₯ β π΅ β¦ {π β π΄ β£ π β€ π₯}) | |
10 | 3 | fvexi 6902 | . . . 4 β’ π΄ β V |
11 | 10 | rabex 5331 | . . 3 β’ {π β π΄ β£ π β€ π} β V |
12 | 8, 9, 11 | fvmpt 6995 | . 2 β’ (π β π΅ β ((π₯ β π΅ β¦ {π β π΄ β£ π β€ π₯})βπ) = {π β π΄ β£ π β€ π}) |
13 | 6, 12 | sylan9eq 2792 | 1 β’ ((πΎ β πΆ β§ π β π΅) β (πβπ) = {π β π΄ β£ π β€ π}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 class class class wbr 5147 β¦ cmpt 5230 βcfv 6540 Basecbs 17140 lecple 17200 Atomscatm 38121 pmapcpmap 38356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-pmap 38363 |
This theorem is referenced by: elpmap 38617 pmapssat 38618 pmaple 38620 pmapat 38622 pmap0 38624 pmap1N 38626 pmapsub 38627 pmapglbx 38628 isline2 38633 linepmap 38634 polpmapN 38771 2polssN 38774 pmaplubN 38783 |
Copyright terms: Public domain | W3C validator |