Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapval Structured version   Visualization version   GIF version

Theorem pmapval 39781
Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
pmapfval.b 𝐵 = (Base‘𝐾)
pmapfval.l = (le‘𝐾)
pmapfval.a 𝐴 = (Atoms‘𝐾)
pmapfval.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapval ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) = {𝑎𝐴𝑎 𝑋})
Distinct variable groups:   𝐴,𝑎   𝐾,𝑎   𝑋,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝐶(𝑎)   (𝑎)   𝑀(𝑎)

Proof of Theorem pmapval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pmapfval.b . . . 4 𝐵 = (Base‘𝐾)
2 pmapfval.l . . . 4 = (le‘𝐾)
3 pmapfval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 pmapfval.m . . . 4 𝑀 = (pmap‘𝐾)
51, 2, 3, 4pmapfval 39780 . . 3 (𝐾𝐶𝑀 = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
65fveq1d 6883 . 2 (𝐾𝐶 → (𝑀𝑋) = ((𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥})‘𝑋))
7 breq2 5128 . . . 4 (𝑥 = 𝑋 → (𝑎 𝑥𝑎 𝑋))
87rabbidv 3428 . . 3 (𝑥 = 𝑋 → {𝑎𝐴𝑎 𝑥} = {𝑎𝐴𝑎 𝑋})
9 eqid 2736 . . 3 (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}) = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥})
103fvexi 6895 . . . 4 𝐴 ∈ V
1110rabex 5314 . . 3 {𝑎𝐴𝑎 𝑋} ∈ V
128, 9, 11fvmpt 6991 . 2 (𝑋𝐵 → ((𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥})‘𝑋) = {𝑎𝐴𝑎 𝑋})
136, 12sylan9eq 2791 1 ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) = {𝑎𝐴𝑎 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420   class class class wbr 5124  cmpt 5206  cfv 6536  Basecbs 17233  lecple 17283  Atomscatm 39286  pmapcpmap 39521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-pmap 39528
This theorem is referenced by:  elpmap  39782  pmapssat  39783  pmaple  39785  pmapat  39787  pmap0  39789  pmap1N  39791  pmapsub  39792  pmapglbx  39793  isline2  39798  linepmap  39799  polpmapN  39936  2polssN  39939  pmaplubN  39948
  Copyright terms: Public domain W3C validator