![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapval | Structured version Visualization version GIF version |
Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.) |
Ref | Expression |
---|---|
pmapfval.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapfval.l | ⊢ ≤ = (le‘𝐾) |
pmapfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapfval.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapval | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pmapfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | pmapfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | pmapfval.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | 1, 2, 3, 4 | pmapfval 39713 | . . 3 ⊢ (𝐾 ∈ 𝐶 → 𝑀 = (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})) |
6 | 5 | fveq1d 6922 | . 2 ⊢ (𝐾 ∈ 𝐶 → (𝑀‘𝑋) = ((𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})‘𝑋)) |
7 | breq2 5170 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑎 ≤ 𝑥 ↔ 𝑎 ≤ 𝑋)) | |
8 | 7 | rabbidv 3451 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥} = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) |
9 | eqid 2740 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥}) = (𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥}) | |
10 | 3 | fvexi 6934 | . . . 4 ⊢ 𝐴 ∈ V |
11 | 10 | rabex 5357 | . . 3 ⊢ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋} ∈ V |
12 | 8, 9, 11 | fvmpt 7029 | . 2 ⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥})‘𝑋) = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) |
13 | 6, 12 | sylan9eq 2800 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 Basecbs 17258 lecple 17318 Atomscatm 39219 pmapcpmap 39454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-pmap 39461 |
This theorem is referenced by: elpmap 39715 pmapssat 39716 pmaple 39718 pmapat 39720 pmap0 39722 pmap1N 39724 pmapsub 39725 pmapglbx 39726 isline2 39731 linepmap 39732 polpmapN 39869 2polssN 39872 pmaplubN 39881 |
Copyright terms: Public domain | W3C validator |