Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapval Structured version   Visualization version   GIF version

Theorem pmapval 39714
Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
pmapfval.b 𝐵 = (Base‘𝐾)
pmapfval.l = (le‘𝐾)
pmapfval.a 𝐴 = (Atoms‘𝐾)
pmapfval.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapval ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) = {𝑎𝐴𝑎 𝑋})
Distinct variable groups:   𝐴,𝑎   𝐾,𝑎   𝑋,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝐶(𝑎)   (𝑎)   𝑀(𝑎)

Proof of Theorem pmapval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pmapfval.b . . . 4 𝐵 = (Base‘𝐾)
2 pmapfval.l . . . 4 = (le‘𝐾)
3 pmapfval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 pmapfval.m . . . 4 𝑀 = (pmap‘𝐾)
51, 2, 3, 4pmapfval 39713 . . 3 (𝐾𝐶𝑀 = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
65fveq1d 6922 . 2 (𝐾𝐶 → (𝑀𝑋) = ((𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥})‘𝑋))
7 breq2 5170 . . . 4 (𝑥 = 𝑋 → (𝑎 𝑥𝑎 𝑋))
87rabbidv 3451 . . 3 (𝑥 = 𝑋 → {𝑎𝐴𝑎 𝑥} = {𝑎𝐴𝑎 𝑋})
9 eqid 2740 . . 3 (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}) = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥})
103fvexi 6934 . . . 4 𝐴 ∈ V
1110rabex 5357 . . 3 {𝑎𝐴𝑎 𝑋} ∈ V
128, 9, 11fvmpt 7029 . 2 (𝑋𝐵 → ((𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥})‘𝑋) = {𝑎𝐴𝑎 𝑋})
136, 12sylan9eq 2800 1 ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) = {𝑎𝐴𝑎 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  cmpt 5249  cfv 6573  Basecbs 17258  lecple 17318  Atomscatm 39219  pmapcpmap 39454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-pmap 39461
This theorem is referenced by:  elpmap  39715  pmapssat  39716  pmaple  39718  pmapat  39720  pmap0  39722  pmap1N  39724  pmapsub  39725  pmapglbx  39726  isline2  39731  linepmap  39732  polpmapN  39869  2polssN  39872  pmaplubN  39881
  Copyright terms: Public domain W3C validator