Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapval Structured version   Visualization version   GIF version

Theorem pmapval 37698
Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
pmapfval.b 𝐵 = (Base‘𝐾)
pmapfval.l = (le‘𝐾)
pmapfval.a 𝐴 = (Atoms‘𝐾)
pmapfval.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapval ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) = {𝑎𝐴𝑎 𝑋})
Distinct variable groups:   𝐴,𝑎   𝐾,𝑎   𝑋,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝐶(𝑎)   (𝑎)   𝑀(𝑎)

Proof of Theorem pmapval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pmapfval.b . . . 4 𝐵 = (Base‘𝐾)
2 pmapfval.l . . . 4 = (le‘𝐾)
3 pmapfval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 pmapfval.m . . . 4 𝑀 = (pmap‘𝐾)
51, 2, 3, 4pmapfval 37697 . . 3 (𝐾𝐶𝑀 = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}))
65fveq1d 6758 . 2 (𝐾𝐶 → (𝑀𝑋) = ((𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥})‘𝑋))
7 breq2 5074 . . . 4 (𝑥 = 𝑋 → (𝑎 𝑥𝑎 𝑋))
87rabbidv 3404 . . 3 (𝑥 = 𝑋 → {𝑎𝐴𝑎 𝑥} = {𝑎𝐴𝑎 𝑋})
9 eqid 2738 . . 3 (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥}) = (𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥})
103fvexi 6770 . . . 4 𝐴 ∈ V
1110rabex 5251 . . 3 {𝑎𝐴𝑎 𝑋} ∈ V
128, 9, 11fvmpt 6857 . 2 (𝑋𝐵 → ((𝑥𝐵 ↦ {𝑎𝐴𝑎 𝑥})‘𝑋) = {𝑎𝐴𝑎 𝑋})
136, 12sylan9eq 2799 1 ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) = {𝑎𝐴𝑎 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067   class class class wbr 5070  cmpt 5153  cfv 6418  Basecbs 16840  lecple 16895  Atomscatm 37204  pmapcpmap 37438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-pmap 37445
This theorem is referenced by:  elpmap  37699  pmapssat  37700  pmaple  37702  pmapat  37704  pmap0  37706  pmap1N  37708  pmapsub  37709  pmapglbx  37710  isline2  37715  linepmap  37716  polpmapN  37853  2polssN  37856  pmaplubN  37865
  Copyright terms: Public domain W3C validator