Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapssat Structured version   Visualization version   GIF version

Theorem pmapssat 39778
Description: The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012.)
Hypotheses
Ref Expression
pmapssat.b 𝐵 = (Base‘𝐾)
pmapssat.a 𝐴 = (Atoms‘𝐾)
pmapssat.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapssat ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) ⊆ 𝐴)

Proof of Theorem pmapssat
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 pmapssat.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2735 . . 3 (le‘𝐾) = (le‘𝐾)
3 pmapssat.a . . 3 𝐴 = (Atoms‘𝐾)
4 pmapssat.m . . 3 𝑀 = (pmap‘𝐾)
51, 2, 3, 4pmapval 39776 . 2 ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) = {𝑝𝐴𝑝(le‘𝐾)𝑋})
6 ssrab2 4055 . 2 {𝑝𝐴𝑝(le‘𝐾)𝑋} ⊆ 𝐴
75, 6eqsstrdi 4003 1 ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3415  wss 3926   class class class wbr 5119  cfv 6531  Basecbs 17228  lecple 17278  Atomscatm 39281  pmapcpmap 39516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-pmap 39523
This theorem is referenced by:  pmapssbaN  39779  pmapglb2N  39790  pmapglb2xN  39791  pmapjoin  39871  pmapjat1  39872  pmapjat2  39873  pmapjlln1  39874  hlmod1i  39875  polpmapN  39931  2pmaplubN  39945  pmapj2N  39948  pmapocjN  39949  polatN  39950  pmapsubclN  39965  ispsubcl2N  39966  pl42lem2N  39999  pl42lem3N  40000
  Copyright terms: Public domain W3C validator