| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapssat | Structured version Visualization version GIF version | ||
| Description: The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012.) |
| Ref | Expression |
|---|---|
| pmapssat.b | ⊢ 𝐵 = (Base‘𝐾) |
| pmapssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pmapssat.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmapssat | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapssat.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2733 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | pmapssat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | pmapssat.m | . . 3 ⊢ 𝑀 = (pmap‘𝐾) | |
| 5 | 1, 2, 3, 4 | pmapval 39929 | . 2 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)𝑋}) |
| 6 | ssrab2 4029 | . 2 ⊢ {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)𝑋} ⊆ 𝐴 | |
| 7 | 5, 6 | eqsstrdi 3975 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 class class class wbr 5095 ‘cfv 6489 Basecbs 17127 lecple 17175 Atomscatm 39435 pmapcpmap 39669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-pmap 39676 |
| This theorem is referenced by: pmapssbaN 39932 pmapglb2N 39943 pmapglb2xN 39944 pmapjoin 40024 pmapjat1 40025 pmapjat2 40026 pmapjlln1 40027 hlmod1i 40028 polpmapN 40084 2pmaplubN 40098 pmapj2N 40101 pmapocjN 40102 polatN 40103 pmapsubclN 40118 ispsubcl2N 40119 pl42lem2N 40152 pl42lem3N 40153 |
| Copyright terms: Public domain | W3C validator |