Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapssat Structured version   Visualization version   GIF version

Theorem pmapssat 37773
Description: The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012.)
Hypotheses
Ref Expression
pmapssat.b 𝐵 = (Base‘𝐾)
pmapssat.a 𝐴 = (Atoms‘𝐾)
pmapssat.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapssat ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) ⊆ 𝐴)

Proof of Theorem pmapssat
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 pmapssat.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
3 pmapssat.a . . 3 𝐴 = (Atoms‘𝐾)
4 pmapssat.m . . 3 𝑀 = (pmap‘𝐾)
51, 2, 3, 4pmapval 37771 . 2 ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) = {𝑝𝐴𝑝(le‘𝐾)𝑋})
6 ssrab2 4013 . 2 {𝑝𝐴𝑝(le‘𝐾)𝑋} ⊆ 𝐴
75, 6eqsstrdi 3975 1 ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  wss 3887   class class class wbr 5074  cfv 6433  Basecbs 16912  lecple 16969  Atomscatm 37277  pmapcpmap 37511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-pmap 37518
This theorem is referenced by:  pmapssbaN  37774  pmapglb2N  37785  pmapglb2xN  37786  pmapjoin  37866  pmapjat1  37867  pmapjat2  37868  pmapjlln1  37869  hlmod1i  37870  polpmapN  37926  2pmaplubN  37940  pmapj2N  37943  pmapocjN  37944  polatN  37945  pmapsubclN  37960  ispsubcl2N  37961  pl42lem2N  37994  pl42lem3N  37995
  Copyright terms: Public domain W3C validator