Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapssat | Structured version Visualization version GIF version |
Description: The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012.) |
Ref | Expression |
---|---|
pmapssat.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapssat.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapssat | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapssat.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | pmapssat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | pmapssat.m | . . 3 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | 1, 2, 3, 4 | pmapval 37771 | . 2 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)𝑋}) |
6 | ssrab2 4013 | . 2 ⊢ {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)𝑋} ⊆ 𝐴 | |
7 | 5, 6 | eqsstrdi 3975 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 lecple 16969 Atomscatm 37277 pmapcpmap 37511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-pmap 37518 |
This theorem is referenced by: pmapssbaN 37774 pmapglb2N 37785 pmapglb2xN 37786 pmapjoin 37866 pmapjat1 37867 pmapjat2 37868 pmapjlln1 37869 hlmod1i 37870 polpmapN 37926 2pmaplubN 37940 pmapj2N 37943 pmapocjN 37944 polatN 37945 pmapsubclN 37960 ispsubcl2N 37961 pl42lem2N 37994 pl42lem3N 37995 |
Copyright terms: Public domain | W3C validator |