| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapssat | Structured version Visualization version GIF version | ||
| Description: The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012.) |
| Ref | Expression |
|---|---|
| pmapssat.b | ⊢ 𝐵 = (Base‘𝐾) |
| pmapssat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pmapssat.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmapssat | ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapssat.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2735 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | pmapssat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | pmapssat.m | . . 3 ⊢ 𝑀 = (pmap‘𝐾) | |
| 5 | 1, 2, 3, 4 | pmapval 39776 | . 2 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)𝑋}) |
| 6 | ssrab2 4055 | . 2 ⊢ {𝑝 ∈ 𝐴 ∣ 𝑝(le‘𝐾)𝑋} ⊆ 𝐴 | |
| 7 | 5, 6 | eqsstrdi 4003 | 1 ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 class class class wbr 5119 ‘cfv 6531 Basecbs 17228 lecple 17278 Atomscatm 39281 pmapcpmap 39516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-pmap 39523 |
| This theorem is referenced by: pmapssbaN 39779 pmapglb2N 39790 pmapglb2xN 39791 pmapjoin 39871 pmapjat1 39872 pmapjat2 39873 pmapjlln1 39874 hlmod1i 39875 polpmapN 39931 2pmaplubN 39945 pmapj2N 39948 pmapocjN 39949 polatN 39950 pmapsubclN 39965 ispsubcl2N 39966 pl42lem2N 39999 pl42lem3N 40000 |
| Copyright terms: Public domain | W3C validator |