Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapssat Structured version   Visualization version   GIF version

Theorem pmapssat 39753
Description: The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012.)
Hypotheses
Ref Expression
pmapssat.b 𝐵 = (Base‘𝐾)
pmapssat.a 𝐴 = (Atoms‘𝐾)
pmapssat.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapssat ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) ⊆ 𝐴)

Proof of Theorem pmapssat
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 pmapssat.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
3 pmapssat.a . . 3 𝐴 = (Atoms‘𝐾)
4 pmapssat.m . . 3 𝑀 = (pmap‘𝐾)
51, 2, 3, 4pmapval 39751 . 2 ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) = {𝑝𝐴𝑝(le‘𝐾)𝑋})
6 ssrab2 4043 . 2 {𝑝𝐴𝑝(le‘𝐾)𝑋} ⊆ 𝐴
75, 6eqsstrdi 3991 1 ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  wss 3914   class class class wbr 5107  cfv 6511  Basecbs 17179  lecple 17227  Atomscatm 39256  pmapcpmap 39491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-pmap 39498
This theorem is referenced by:  pmapssbaN  39754  pmapglb2N  39765  pmapglb2xN  39766  pmapjoin  39846  pmapjat1  39847  pmapjat2  39848  pmapjlln1  39849  hlmod1i  39850  polpmapN  39906  2pmaplubN  39920  pmapj2N  39923  pmapocjN  39924  polatN  39925  pmapsubclN  39940  ispsubcl2N  39941  pl42lem2N  39974  pl42lem3N  39975
  Copyright terms: Public domain W3C validator