![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapssat | Structured version Visualization version GIF version |
Description: The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012.) |
Ref | Expression |
---|---|
pmapssat.b | β’ π΅ = (BaseβπΎ) |
pmapssat.a | β’ π΄ = (AtomsβπΎ) |
pmapssat.m | β’ π = (pmapβπΎ) |
Ref | Expression |
---|---|
pmapssat | β’ ((πΎ β πΆ β§ π β π΅) β (πβπ) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapssat.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2732 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
3 | pmapssat.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
4 | pmapssat.m | . . 3 β’ π = (pmapβπΎ) | |
5 | 1, 2, 3, 4 | pmapval 38616 | . 2 β’ ((πΎ β πΆ β§ π β π΅) β (πβπ) = {π β π΄ β£ π(leβπΎ)π}) |
6 | ssrab2 4076 | . 2 β’ {π β π΄ β£ π(leβπΎ)π} β π΄ | |
7 | 5, 6 | eqsstrdi 4035 | 1 β’ ((πΎ β πΆ β§ π β π΅) β (πβπ) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 β wss 3947 class class class wbr 5147 βcfv 6540 Basecbs 17140 lecple 17200 Atomscatm 38121 pmapcpmap 38356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-pmap 38363 |
This theorem is referenced by: pmapssbaN 38619 pmapglb2N 38630 pmapglb2xN 38631 pmapjoin 38711 pmapjat1 38712 pmapjat2 38713 pmapjlln1 38714 hlmod1i 38715 polpmapN 38771 2pmaplubN 38785 pmapj2N 38788 pmapocjN 38789 polatN 38790 pmapsubclN 38805 ispsubcl2N 38806 pl42lem2N 38839 pl42lem3N 38840 |
Copyright terms: Public domain | W3C validator |