MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpmi Structured version   Visualization version   GIF version

Theorem elpmi 8864
Description: A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015.)
Assertion
Ref Expression
elpmi (𝐹 ∈ (𝐴pm 𝐵) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))

Proof of Theorem elpmi
StepHypRef Expression
1 n0i 4334 . . . 4 (𝐹 ∈ (𝐴pm 𝐵) → ¬ (𝐴pm 𝐵) = ∅)
2 fnpm 8852 . . . . . 6 pm Fn (V × V)
32fndmi 6658 . . . . 5 dom ↑pm = (V × V)
43ndmov 7605 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴pm 𝐵) = ∅)
51, 4nsyl2 141 . . 3 (𝐹 ∈ (𝐴pm 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
6 elpm2g 8862 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
75, 6syl 17 . 2 (𝐹 ∈ (𝐴pm 𝐵) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
87ibi 267 1 (𝐹 ∈ (𝐴pm 𝐵) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  Vcvv 3471  wss 3947  c0 4323   × cxp 5676  dom cdm 5678  wf 6544  (class class class)co 7420  pm cpm 8845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-pm 8847
This theorem is referenced by:  pmfun  8865  pmresg  8888  equivcau  25227  dvn2bss  25859  mrsubff  35122  mrsubrn  35123  elpmrn  44593  elpmi2  44598  issmflem  46115
  Copyright terms: Public domain W3C validator