MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpmi Structured version   Visualization version   GIF version

Theorem elpmi 8592
Description: A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015.)
Assertion
Ref Expression
elpmi (𝐹 ∈ (𝐴pm 𝐵) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))

Proof of Theorem elpmi
StepHypRef Expression
1 n0i 4264 . . . 4 (𝐹 ∈ (𝐴pm 𝐵) → ¬ (𝐴pm 𝐵) = ∅)
2 fnpm 8581 . . . . . 6 pm Fn (V × V)
32fndmi 6521 . . . . 5 dom ↑pm = (V × V)
43ndmov 7434 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴pm 𝐵) = ∅)
51, 4nsyl2 141 . . 3 (𝐹 ∈ (𝐴pm 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
6 elpm2g 8590 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
75, 6syl 17 . 2 (𝐹 ∈ (𝐴pm 𝐵) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
87ibi 266 1 (𝐹 ∈ (𝐴pm 𝐵) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  c0 4253   × cxp 5578  dom cdm 5580  wf 6414  (class class class)co 7255  pm cpm 8574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-pm 8576
This theorem is referenced by:  pmfun  8593  pmresg  8616  equivcau  24369  dvn2bss  24999  mrsubff  33374  mrsubrn  33375  elpmrn  42649  elpmi2  42653  issmflem  44150
  Copyright terms: Public domain W3C validator