| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpmi | Structured version Visualization version GIF version | ||
| Description: A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015.) |
| Ref | Expression |
|---|---|
| elpmi | ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4289 | . . . 4 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → ¬ (𝐴 ↑pm 𝐵) = ∅) | |
| 2 | fnpm 8764 | . . . . . 6 ⊢ ↑pm Fn (V × V) | |
| 3 | 2 | fndmi 6591 | . . . . 5 ⊢ dom ↑pm = (V × V) |
| 4 | 3 | ndmov 7536 | . . . 4 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ↑pm 𝐵) = ∅) |
| 5 | 1, 4 | nsyl2 141 | . . 3 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 6 | elpm2g 8774 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) |
| 8 | 7 | ibi 267 | 1 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ∅c0 4282 × cxp 5617 dom cdm 5619 ⟶wf 6483 (class class class)co 7352 ↑pm cpm 8757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-pm 8759 |
| This theorem is referenced by: pmfun 8777 pmresg 8800 equivcau 25233 dvn2bss 25865 mrsubff 35563 mrsubrn 35564 elpmrn 45322 elpmi2 45327 issmflem 46830 |
| Copyright terms: Public domain | W3C validator |