MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpmi Structured version   Visualization version   GIF version

Theorem elpmi 8776
Description: A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015.)
Assertion
Ref Expression
elpmi (𝐹 ∈ (𝐴pm 𝐵) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))

Proof of Theorem elpmi
StepHypRef Expression
1 n0i 4289 . . . 4 (𝐹 ∈ (𝐴pm 𝐵) → ¬ (𝐴pm 𝐵) = ∅)
2 fnpm 8764 . . . . . 6 pm Fn (V × V)
32fndmi 6591 . . . . 5 dom ↑pm = (V × V)
43ndmov 7536 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴pm 𝐵) = ∅)
51, 4nsyl2 141 . . 3 (𝐹 ∈ (𝐴pm 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
6 elpm2g 8774 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
75, 6syl 17 . 2 (𝐹 ∈ (𝐴pm 𝐵) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
87ibi 267 1 (𝐹 ∈ (𝐴pm 𝐵) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  c0 4282   × cxp 5617  dom cdm 5619  wf 6483  (class class class)co 7352  pm cpm 8757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-pm 8759
This theorem is referenced by:  pmfun  8777  pmresg  8800  equivcau  25233  dvn2bss  25865  mrsubff  35563  mrsubrn  35564  elpmrn  45322  elpmi2  45327  issmflem  46830
  Copyright terms: Public domain W3C validator