![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpmi | Structured version Visualization version GIF version |
Description: A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015.) |
Ref | Expression |
---|---|
elpmi | ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4334 | . . . 4 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → ¬ (𝐴 ↑pm 𝐵) = ∅) | |
2 | fnpm 8852 | . . . . . 6 ⊢ ↑pm Fn (V × V) | |
3 | 2 | fndmi 6658 | . . . . 5 ⊢ dom ↑pm = (V × V) |
4 | 3 | ndmov 7605 | . . . 4 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ↑pm 𝐵) = ∅) |
5 | 1, 4 | nsyl2 141 | . . 3 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
6 | elpm2g 8862 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) |
8 | 7 | ibi 267 | 1 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ⊆ wss 3947 ∅c0 4323 × cxp 5676 dom cdm 5678 ⟶wf 6544 (class class class)co 7420 ↑pm cpm 8845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-pm 8847 |
This theorem is referenced by: pmfun 8865 pmresg 8888 equivcau 25227 dvn2bss 25859 mrsubff 35122 mrsubrn 35123 elpmrn 44593 elpmi2 44598 issmflem 46115 |
Copyright terms: Public domain | W3C validator |