| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem11 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij1 10128. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| Ref | Expression |
|---|---|
| ackbij1lem11 | ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 5259 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ∈ V) | |
| 2 | elinel1 4148 | . . . . . 6 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω) | |
| 3 | 2 | elpwid 4556 | . . . . 5 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ⊆ ω) |
| 4 | sstr 3938 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ω) → 𝐵 ⊆ ω) | |
| 5 | 3, 4 | sylan2 593 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ⊆ ω) |
| 6 | 1, 5 | elpwd 4553 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ∈ 𝒫 ω) |
| 7 | 6 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝒫 ω) |
| 8 | elinel2 4149 | . . 3 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin) | |
| 9 | ssfi 9082 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
| 10 | 8, 9 | sylan 580 | . 2 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
| 11 | 7, 10 | elind 4147 | 1 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4547 {csn 4573 ∪ ciun 4939 ↦ cmpt 5170 × cxp 5612 ‘cfv 6481 ωcom 7796 Fincfn 8869 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-en 8870 df-fin 8873 |
| This theorem is referenced by: ackbij1lem12 10121 ackbij1lem15 10124 ackbij1lem16 10125 ackbij1lem18 10127 |
| Copyright terms: Public domain | W3C validator |