MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem11 Structured version   Visualization version   GIF version

Theorem ackbij1lem11 10189
Description: Lemma for ackbij1 10197. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem11 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ackbij1lem11
StepHypRef Expression
1 ssexg 5281 . . . 4 ((𝐵𝐴𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ∈ V)
2 elinel1 4167 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω)
32elpwid 4575 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ⊆ ω)
4 sstr 3958 . . . . 5 ((𝐵𝐴𝐴 ⊆ ω) → 𝐵 ⊆ ω)
53, 4sylan2 593 . . . 4 ((𝐵𝐴𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ⊆ ω)
61, 5elpwd 4572 . . 3 ((𝐵𝐴𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ∈ 𝒫 ω)
76ancoms 458 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ 𝒫 ω)
8 elinel2 4168 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
9 ssfi 9143 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
108, 9sylan 580 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
117, 10elind 4166 1 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916  wss 3917  𝒫 cpw 4566  {csn 4592   ciun 4958  cmpt 5191   × cxp 5639  cfv 6514  ωcom 7845  Fincfn 8921  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-en 8922  df-fin 8925
This theorem is referenced by:  ackbij1lem12  10190  ackbij1lem15  10193  ackbij1lem16  10194  ackbij1lem18  10196
  Copyright terms: Public domain W3C validator