MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem11 Structured version   Visualization version   GIF version

Theorem ackbij1lem11 9645
Description: Lemma for ackbij1 9653. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem11 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ackbij1lem11
StepHypRef Expression
1 ssexg 5194 . . . 4 ((𝐵𝐴𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ∈ V)
2 elinel1 4125 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω)
32elpwid 4511 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ⊆ ω)
4 sstr 3926 . . . . 5 ((𝐵𝐴𝐴 ⊆ ω) → 𝐵 ⊆ ω)
53, 4sylan2 595 . . . 4 ((𝐵𝐴𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ⊆ ω)
61, 5elpwd 4508 . . 3 ((𝐵𝐴𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ∈ 𝒫 ω)
76ancoms 462 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ 𝒫 ω)
8 elinel2 4126 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
9 ssfi 8726 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
108, 9sylan 583 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
117, 10elind 4124 1 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  Vcvv 3444  cin 3883  wss 3884  𝒫 cpw 4500  {csn 4528   ciun 4884  cmpt 5113   × cxp 5521  cfv 6328  ωcom 7564  Fincfn 8496  cardccrd 9352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-om 7565  df-er 8276  df-en 8497  df-fin 8500
This theorem is referenced by:  ackbij1lem12  9646  ackbij1lem15  9649  ackbij1lem16  9650  ackbij1lem18  9652
  Copyright terms: Public domain W3C validator