![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem11 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 10306. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
Ref | Expression |
---|---|
ackbij1lem11 | ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5341 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ∈ V) | |
2 | elinel1 4224 | . . . . . 6 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω) | |
3 | 2 | elpwid 4631 | . . . . 5 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ⊆ ω) |
4 | sstr 4017 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ω) → 𝐵 ⊆ ω) | |
5 | 3, 4 | sylan2 592 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ⊆ ω) |
6 | 1, 5 | elpwd 4628 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ∈ 𝒫 ω) |
7 | 6 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝒫 ω) |
8 | elinel2 4225 | . . 3 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin) | |
9 | ssfi 9240 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
10 | 8, 9 | sylan 579 | . 2 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
11 | 7, 10 | elind 4223 | 1 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 {csn 4648 ∪ ciun 5015 ↦ cmpt 5249 × cxp 5698 ‘cfv 6573 ωcom 7903 Fincfn 9003 cardccrd 10004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-en 9004 df-fin 9007 |
This theorem is referenced by: ackbij1lem12 10299 ackbij1lem15 10302 ackbij1lem16 10303 ackbij1lem18 10305 |
Copyright terms: Public domain | W3C validator |