MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opwfi Structured version   Visualization version   GIF version

Theorem f1opwfi 9373
Description: A one-to-one mapping induces a one-to-one mapping on finite subsets. (Contributed by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
f1opwfi (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐹𝑏)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 𝐵 ∩ Fin))
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝐹,𝑏

Proof of Theorem f1opwfi
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . 2 (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐹𝑏)) = (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐹𝑏))
2 simpr 484 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
32elin2d 4185 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑏 ∈ Fin)
4 f1ofun 6825 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
5 elinel1 4181 . . . . . . . . 9 (𝑏 ∈ (𝒫 𝐴 ∩ Fin) → 𝑏 ∈ 𝒫 𝐴)
6 elpwi 4587 . . . . . . . . 9 (𝑏 ∈ 𝒫 𝐴𝑏𝐴)
75, 6syl 17 . . . . . . . 8 (𝑏 ∈ (𝒫 𝐴 ∩ Fin) → 𝑏𝐴)
87adantl 481 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑏𝐴)
9 f1odm 6827 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
109adantr 480 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → dom 𝐹 = 𝐴)
118, 10sseqtrrd 4001 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑏 ⊆ dom 𝐹)
12 fores 6805 . . . . . 6 ((Fun 𝐹𝑏 ⊆ dom 𝐹) → (𝐹𝑏):𝑏onto→(𝐹𝑏))
134, 11, 12syl2an2r 685 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑏):𝑏onto→(𝐹𝑏))
14 fofi 9328 . . . . 5 ((𝑏 ∈ Fin ∧ (𝐹𝑏):𝑏onto→(𝐹𝑏)) → (𝐹𝑏) ∈ Fin)
153, 13, 14syl2anc 584 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑏) ∈ Fin)
16 imassrn 6063 . . . . . 6 (𝐹𝑏) ⊆ ran 𝐹
17 f1ofo 6830 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
18 forn 6798 . . . . . . 7 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
1917, 18syl 17 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 → ran 𝐹 = 𝐵)
2016, 19sseqtrid 4006 . . . . 5 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑏) ⊆ 𝐵)
2120adantr 480 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑏) ⊆ 𝐵)
2215, 21elpwd 4586 . . 3 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑏) ∈ 𝒫 𝐵)
2322, 15elind 4180 . 2 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑏) ∈ (𝒫 𝐵 ∩ Fin))
24 simpr 484 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐵 ∩ Fin))
2524elin2d 4185 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ∈ Fin)
26 dff1o3 6829 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))
2726simprbi 496 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
28 elinel1 4181 . . . . . . . . 9 (𝑎 ∈ (𝒫 𝐵 ∩ Fin) → 𝑎 ∈ 𝒫 𝐵)
2928adantl 481 . . . . . . . 8 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ∈ 𝒫 𝐵)
30 elpwi 4587 . . . . . . . 8 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
3129, 30syl 17 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎𝐵)
32 f1ocnv 6835 . . . . . . . . 9 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
3332adantr 480 . . . . . . . 8 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝐹:𝐵1-1-onto𝐴)
34 f1odm 6827 . . . . . . . 8 (𝐹:𝐵1-1-onto𝐴 → dom 𝐹 = 𝐵)
3533, 34syl 17 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → dom 𝐹 = 𝐵)
3631, 35sseqtrrd 4001 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ⊆ dom 𝐹)
37 fores 6805 . . . . . 6 ((Fun 𝐹𝑎 ⊆ dom 𝐹) → (𝐹𝑎):𝑎onto→(𝐹𝑎))
3827, 36, 37syl2an2r 685 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (𝐹𝑎):𝑎onto→(𝐹𝑎))
39 fofi 9328 . . . . 5 ((𝑎 ∈ Fin ∧ (𝐹𝑎):𝑎onto→(𝐹𝑎)) → (𝐹𝑎) ∈ Fin)
4025, 38, 39syl2anc 584 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (𝐹𝑎) ∈ Fin)
41 imassrn 6063 . . . . . 6 (𝐹𝑎) ⊆ ran 𝐹
42 dfdm4 5880 . . . . . . 7 dom 𝐹 = ran 𝐹
4342, 9eqtr3id 2785 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 → ran 𝐹 = 𝐴)
4441, 43sseqtrid 4006 . . . . 5 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑎) ⊆ 𝐴)
4544adantr 480 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (𝐹𝑎) ⊆ 𝐴)
4640, 45elpwd 4586 . . 3 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (𝐹𝑎) ∈ 𝒫 𝐴)
4746, 40elind 4180 . 2 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (𝐹𝑎) ∈ (𝒫 𝐴 ∩ Fin))
485, 28anim12i 613 . . 3 ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵))
4930adantl 481 . . . . . . 7 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑎𝐵)
50 foimacnv 6840 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
5117, 49, 50syl2an 596 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
5251eqcomd 2742 . . . . 5 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑎 = (𝐹 “ (𝐹𝑎)))
53 imaeq2 6048 . . . . . 6 (𝑏 = (𝐹𝑎) → (𝐹𝑏) = (𝐹 “ (𝐹𝑎)))
5453eqeq2d 2747 . . . . 5 (𝑏 = (𝐹𝑎) → (𝑎 = (𝐹𝑏) ↔ 𝑎 = (𝐹 “ (𝐹𝑎))))
5552, 54syl5ibrcom 247 . . . 4 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) → 𝑎 = (𝐹𝑏)))
56 f1of1 6822 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
576adantr 480 . . . . . . 7 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑏𝐴)
58 f1imacnv 6839 . . . . . . 7 ((𝐹:𝐴1-1𝐵𝑏𝐴) → (𝐹 “ (𝐹𝑏)) = 𝑏)
5956, 57, 58syl2an 596 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑏)) = 𝑏)
6059eqcomd 2742 . . . . 5 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑏 = (𝐹 “ (𝐹𝑏)))
61 imaeq2 6048 . . . . . 6 (𝑎 = (𝐹𝑏) → (𝐹𝑎) = (𝐹 “ (𝐹𝑏)))
6261eqeq2d 2747 . . . . 5 (𝑎 = (𝐹𝑏) → (𝑏 = (𝐹𝑎) ↔ 𝑏 = (𝐹 “ (𝐹𝑏))))
6360, 62syl5ibrcom 247 . . . 4 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑎 = (𝐹𝑏) → 𝑏 = (𝐹𝑎)))
6455, 63impbid 212 . . 3 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) ↔ 𝑎 = (𝐹𝑏)))
6548, 64sylan2 593 . 2 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin))) → (𝑏 = (𝐹𝑎) ↔ 𝑎 = (𝐹𝑏)))
661, 23, 47, 65f1o2d 7666 1 (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐹𝑏)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 𝐵 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3930  wss 3931  𝒫 cpw 4580  cmpt 5206  ccnv 5658  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  Fun wfun 6530  1-1wf1 6533  ontowfo 6534  1-1-ontowf1o 6535  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-en 8965  df-dom 8966  df-fin 8968
This theorem is referenced by:  fictb  10263  ackbijnn  15849  tsmsf1o  24088  eulerpartgbij  34409
  Copyright terms: Public domain W3C validator