MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opwfi Structured version   Visualization version   GIF version

Theorem f1opwfi 8822
Description: A one-to-one mapping induces a one-to-one mapping on finite subsets. (Contributed by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
f1opwfi (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐹𝑏)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 𝐵 ∩ Fin))
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝐹,𝑏

Proof of Theorem f1opwfi
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . 2 (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐹𝑏)) = (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐹𝑏))
2 simpr 487 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑏 ∈ (𝒫 𝐴 ∩ Fin))
32elin2d 4176 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑏 ∈ Fin)
4 f1ofun 6612 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
5 elinel1 4172 . . . . . . . . 9 (𝑏 ∈ (𝒫 𝐴 ∩ Fin) → 𝑏 ∈ 𝒫 𝐴)
6 elpwi 4551 . . . . . . . . 9 (𝑏 ∈ 𝒫 𝐴𝑏𝐴)
75, 6syl 17 . . . . . . . 8 (𝑏 ∈ (𝒫 𝐴 ∩ Fin) → 𝑏𝐴)
87adantl 484 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑏𝐴)
9 f1odm 6614 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
109adantr 483 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → dom 𝐹 = 𝐴)
118, 10sseqtrrd 4008 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑏 ⊆ dom 𝐹)
12 fores 6595 . . . . . 6 ((Fun 𝐹𝑏 ⊆ dom 𝐹) → (𝐹𝑏):𝑏onto→(𝐹𝑏))
134, 11, 12syl2an2r 683 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑏):𝑏onto→(𝐹𝑏))
14 fofi 8804 . . . . 5 ((𝑏 ∈ Fin ∧ (𝐹𝑏):𝑏onto→(𝐹𝑏)) → (𝐹𝑏) ∈ Fin)
153, 13, 14syl2anc 586 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑏) ∈ Fin)
16 imassrn 5935 . . . . . 6 (𝐹𝑏) ⊆ ran 𝐹
17 f1ofo 6617 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
18 forn 6588 . . . . . . 7 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
1917, 18syl 17 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 → ran 𝐹 = 𝐵)
2016, 19sseqtrid 4019 . . . . 5 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑏) ⊆ 𝐵)
2120adantr 483 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑏) ⊆ 𝐵)
2215, 21elpwd 4550 . . 3 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑏) ∈ 𝒫 𝐵)
2322, 15elind 4171 . 2 ((𝐹:𝐴1-1-onto𝐵𝑏 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑏) ∈ (𝒫 𝐵 ∩ Fin))
24 simpr 487 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐵 ∩ Fin))
2524elin2d 4176 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ∈ Fin)
26 dff1o3 6616 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))
2726simprbi 499 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
28 elinel1 4172 . . . . . . . . 9 (𝑎 ∈ (𝒫 𝐵 ∩ Fin) → 𝑎 ∈ 𝒫 𝐵)
2928adantl 484 . . . . . . . 8 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ∈ 𝒫 𝐵)
30 elpwi 4551 . . . . . . . 8 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
3129, 30syl 17 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎𝐵)
32 f1ocnv 6622 . . . . . . . . 9 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
3332adantr 483 . . . . . . . 8 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝐹:𝐵1-1-onto𝐴)
34 f1odm 6614 . . . . . . . 8 (𝐹:𝐵1-1-onto𝐴 → dom 𝐹 = 𝐵)
3533, 34syl 17 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → dom 𝐹 = 𝐵)
3631, 35sseqtrrd 4008 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → 𝑎 ⊆ dom 𝐹)
37 fores 6595 . . . . . 6 ((Fun 𝐹𝑎 ⊆ dom 𝐹) → (𝐹𝑎):𝑎onto→(𝐹𝑎))
3827, 36, 37syl2an2r 683 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (𝐹𝑎):𝑎onto→(𝐹𝑎))
39 fofi 8804 . . . . 5 ((𝑎 ∈ Fin ∧ (𝐹𝑎):𝑎onto→(𝐹𝑎)) → (𝐹𝑎) ∈ Fin)
4025, 38, 39syl2anc 586 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (𝐹𝑎) ∈ Fin)
41 imassrn 5935 . . . . . 6 (𝐹𝑎) ⊆ ran 𝐹
42 dfdm4 5759 . . . . . . 7 dom 𝐹 = ran 𝐹
4342, 9syl5eqr 2870 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 → ran 𝐹 = 𝐴)
4441, 43sseqtrid 4019 . . . . 5 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑎) ⊆ 𝐴)
4544adantr 483 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (𝐹𝑎) ⊆ 𝐴)
4640, 45elpwd 4550 . . 3 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (𝐹𝑎) ∈ 𝒫 𝐴)
4746, 40elind 4171 . 2 ((𝐹:𝐴1-1-onto𝐵𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (𝐹𝑎) ∈ (𝒫 𝐴 ∩ Fin))
485, 28anim12i 614 . . 3 ((𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) → (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵))
4930adantl 484 . . . . . . 7 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑎𝐵)
50 foimacnv 6627 . . . . . . 7 ((𝐹:𝐴onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
5117, 49, 50syl2an 597 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
5251eqcomd 2827 . . . . 5 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑎 = (𝐹 “ (𝐹𝑎)))
53 imaeq2 5920 . . . . . 6 (𝑏 = (𝐹𝑎) → (𝐹𝑏) = (𝐹 “ (𝐹𝑎)))
5453eqeq2d 2832 . . . . 5 (𝑏 = (𝐹𝑎) → (𝑎 = (𝐹𝑏) ↔ 𝑎 = (𝐹 “ (𝐹𝑎))))
5552, 54syl5ibrcom 249 . . . 4 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) → 𝑎 = (𝐹𝑏)))
56 f1of1 6609 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
576adantr 483 . . . . . . 7 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑏𝐴)
58 f1imacnv 6626 . . . . . . 7 ((𝐹:𝐴1-1𝐵𝑏𝐴) → (𝐹 “ (𝐹𝑏)) = 𝑏)
5956, 57, 58syl2an 597 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑏)) = 𝑏)
6059eqcomd 2827 . . . . 5 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑏 = (𝐹 “ (𝐹𝑏)))
61 imaeq2 5920 . . . . . 6 (𝑎 = (𝐹𝑏) → (𝐹𝑎) = (𝐹 “ (𝐹𝑏)))
6261eqeq2d 2832 . . . . 5 (𝑎 = (𝐹𝑏) → (𝑏 = (𝐹𝑎) ↔ 𝑏 = (𝐹 “ (𝐹𝑏))))
6360, 62syl5ibrcom 249 . . . 4 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑎 = (𝐹𝑏) → 𝑏 = (𝐹𝑎)))
6455, 63impbid 214 . . 3 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) ↔ 𝑎 = (𝐹𝑏)))
6548, 64sylan2 594 . 2 ((𝐹:𝐴1-1-onto𝐵 ∧ (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑎 ∈ (𝒫 𝐵 ∩ Fin))) → (𝑏 = (𝐹𝑎) ↔ 𝑎 = (𝐹𝑏)))
661, 23, 47, 65f1o2d 7393 1 (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐹𝑏)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 𝐵 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  cin 3935  wss 3936  𝒫 cpw 4539  cmpt 5139  ccnv 5549  dom cdm 5550  ran crn 5551  cres 5552  cima 5553  Fun wfun 6344  1-1wf1 6347  ontowfo 6348  1-1-ontowf1o 6349  Fincfn 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-om 7575  df-1o 8096  df-er 8283  df-en 8504  df-dom 8505  df-fin 8507
This theorem is referenced by:  fictb  9661  ackbijnn  15177  tsmsf1o  22747  eulerpartgbij  31625
  Copyright terms: Public domain W3C validator