| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filss | Structured version Visualization version GIF version | ||
| Description: A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfil 23767 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹)) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹)) |
| 4 | elfvdm 6877 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ dom Fil) | |
| 5 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ 𝑋) | |
| 6 | elpw2g 5283 | . . . 4 ⊢ (𝑋 ∈ dom Fil → (𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋)) | |
| 7 | 6 | biimpar 477 | . . 3 ⊢ ((𝑋 ∈ dom Fil ∧ 𝐵 ⊆ 𝑋) → 𝐵 ∈ 𝒫 𝑋) |
| 8 | 4, 5, 7 | syl2an 596 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝒫 𝑋) |
| 9 | simpr1 1195 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ∈ 𝐹) | |
| 10 | simpr3 1197 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ⊆ 𝐵) | |
| 11 | 9, 10 | elpwd 4565 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ∈ 𝒫 𝐵) |
| 12 | inelcm 4424 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐴 ∈ 𝒫 𝐵) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅) | |
| 13 | 9, 11, 12 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅) |
| 14 | pweq 4573 | . . . . . 6 ⊢ (𝑥 = 𝐵 → 𝒫 𝑥 = 𝒫 𝐵) | |
| 15 | 14 | ineq2d 4179 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐹 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝐵)) |
| 16 | 15 | neeq1d 2984 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐵) ≠ ∅)) |
| 17 | eleq1 2816 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐹 ↔ 𝐵 ∈ 𝐹)) | |
| 18 | 16, 17 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐵 → (((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹) ↔ ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵 ∈ 𝐹))) |
| 19 | 18 | rspccv 3582 | . 2 ⊢ (∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹) → (𝐵 ∈ 𝒫 𝑋 → ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵 ∈ 𝐹))) |
| 20 | 3, 8, 13, 19 | syl3c 66 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 𝒫 cpw 4559 dom cdm 5631 ‘cfv 6499 fBascfbas 21284 Filcfil 23765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-fil 23766 |
| This theorem is referenced by: filin 23774 filtop 23775 isfil2 23776 infil 23783 fgfil 23795 fgabs 23799 filconn 23803 filuni 23805 trfil2 23807 trfg 23811 isufil2 23828 ufprim 23829 ufileu 23839 filufint 23840 elfm3 23870 rnelfm 23873 fmfnfmlem2 23875 fmfnfmlem4 23877 flimopn 23895 flimrest 23903 flimfnfcls 23948 fclscmpi 23949 alexsublem 23964 metust 24479 cfil3i 25202 cfilfcls 25207 iscmet3lem2 25225 equivcfil 25232 relcmpcmet 25251 minveclem4 25365 fgmin 36351 |
| Copyright terms: Public domain | W3C validator |