MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filss Structured version   Visualization version   GIF version

Theorem filss 23740
Description: A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filss ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐵𝐹)

Proof of Theorem filss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfil 23734 . . . 4 (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
21simprbi 496 . . 3 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
32adantr 480 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
4 elfvdm 6895 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ dom Fil)
5 simp2 1137 . . 3 ((𝐴𝐹𝐵𝑋𝐴𝐵) → 𝐵𝑋)
6 elpw2g 5288 . . . 4 (𝑋 ∈ dom Fil → (𝐵 ∈ 𝒫 𝑋𝐵𝑋))
76biimpar 477 . . 3 ((𝑋 ∈ dom Fil ∧ 𝐵𝑋) → 𝐵 ∈ 𝒫 𝑋)
84, 5, 7syl2an 596 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐵 ∈ 𝒫 𝑋)
9 simpr1 1195 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐴𝐹)
10 simpr3 1197 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐴𝐵)
119, 10elpwd 4569 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐴 ∈ 𝒫 𝐵)
12 inelcm 4428 . . 3 ((𝐴𝐹𝐴 ∈ 𝒫 𝐵) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅)
139, 11, 12syl2anc 584 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅)
14 pweq 4577 . . . . . 6 (𝑥 = 𝐵 → 𝒫 𝑥 = 𝒫 𝐵)
1514ineq2d 4183 . . . . 5 (𝑥 = 𝐵 → (𝐹 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝐵))
1615neeq1d 2984 . . . 4 (𝑥 = 𝐵 → ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐵) ≠ ∅))
17 eleq1 2816 . . . 4 (𝑥 = 𝐵 → (𝑥𝐹𝐵𝐹))
1816, 17imbi12d 344 . . 3 (𝑥 = 𝐵 → (((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹) ↔ ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵𝐹)))
1918rspccv 3585 . 2 (∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹) → (𝐵 ∈ 𝒫 𝑋 → ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵𝐹)))
203, 8, 13, 19syl3c 66 1 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐵𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  dom cdm 5638  cfv 6511  fBascfbas 21252  Filcfil 23732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-fil 23733
This theorem is referenced by:  filin  23741  filtop  23742  isfil2  23743  infil  23750  fgfil  23762  fgabs  23766  filconn  23770  filuni  23772  trfil2  23774  trfg  23778  isufil2  23795  ufprim  23796  ufileu  23806  filufint  23807  elfm3  23837  rnelfm  23840  fmfnfmlem2  23842  fmfnfmlem4  23844  flimopn  23862  flimrest  23870  flimfnfcls  23915  fclscmpi  23916  alexsublem  23931  metust  24446  cfil3i  25169  cfilfcls  25174  iscmet3lem2  25192  equivcfil  25199  relcmpcmet  25218  minveclem4  25332  fgmin  36358
  Copyright terms: Public domain W3C validator