![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > filss | Structured version Visualization version GIF version |
Description: A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
filss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfil 22159 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | |
2 | 1 | simprbi 489 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹)) |
3 | 2 | adantr 473 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹)) |
4 | elfvdm 6531 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ dom Fil) | |
5 | simp2 1117 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ 𝑋) | |
6 | elpw2g 5103 | . . . 4 ⊢ (𝑋 ∈ dom Fil → (𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋)) | |
7 | 6 | biimpar 470 | . . 3 ⊢ ((𝑋 ∈ dom Fil ∧ 𝐵 ⊆ 𝑋) → 𝐵 ∈ 𝒫 𝑋) |
8 | 4, 5, 7 | syl2an 586 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝒫 𝑋) |
9 | simpr1 1174 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ∈ 𝐹) | |
10 | simpr3 1176 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ⊆ 𝐵) | |
11 | 9, 10 | elpwd 4431 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ∈ 𝒫 𝐵) |
12 | inelcm 4297 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐴 ∈ 𝒫 𝐵) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅) | |
13 | 9, 11, 12 | syl2anc 576 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅) |
14 | pweq 4425 | . . . . . 6 ⊢ (𝑥 = 𝐵 → 𝒫 𝑥 = 𝒫 𝐵) | |
15 | 14 | ineq2d 4076 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐹 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝐵)) |
16 | 15 | neeq1d 3026 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐵) ≠ ∅)) |
17 | eleq1 2853 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐹 ↔ 𝐵 ∈ 𝐹)) | |
18 | 16, 17 | imbi12d 337 | . . 3 ⊢ (𝑥 = 𝐵 → (((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹) ↔ ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵 ∈ 𝐹))) |
19 | 18 | rspccv 3532 | . 2 ⊢ (∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹) → (𝐵 ∈ 𝒫 𝑋 → ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵 ∈ 𝐹))) |
20 | 3, 8, 13, 19 | syl3c 66 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 ∀wral 3088 ∩ cin 3828 ⊆ wss 3829 ∅c0 4178 𝒫 cpw 4422 dom cdm 5407 ‘cfv 6188 fBascfbas 20235 Filcfil 22157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fv 6196 df-fil 22158 |
This theorem is referenced by: filin 22166 filtop 22167 isfil2 22168 infil 22175 fgfil 22187 fgabs 22191 filconn 22195 filuni 22197 trfil2 22199 trfg 22203 isufil2 22220 ufprim 22221 ufileu 22231 filufint 22232 elfm3 22262 rnelfm 22265 fmfnfmlem2 22267 fmfnfmlem4 22269 flimopn 22287 flimrest 22295 flimfnfcls 22340 fclscmpi 22341 alexsublem 22356 metust 22871 cfil3i 23575 cfilfcls 23580 iscmet3lem2 23598 equivcfil 23605 relcmpcmet 23624 minveclem4 23738 fgmin 33245 |
Copyright terms: Public domain | W3C validator |