Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > filss | Structured version Visualization version GIF version |
Description: A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
filss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfil 23043 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | |
2 | 1 | simprbi 498 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹)) |
3 | 2 | adantr 482 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹)) |
4 | elfvdm 6838 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ dom Fil) | |
5 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ 𝑋) | |
6 | elpw2g 5277 | . . . 4 ⊢ (𝑋 ∈ dom Fil → (𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋)) | |
7 | 6 | biimpar 479 | . . 3 ⊢ ((𝑋 ∈ dom Fil ∧ 𝐵 ⊆ 𝑋) → 𝐵 ∈ 𝒫 𝑋) |
8 | 4, 5, 7 | syl2an 597 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝒫 𝑋) |
9 | simpr1 1194 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ∈ 𝐹) | |
10 | simpr3 1196 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ⊆ 𝐵) | |
11 | 9, 10 | elpwd 4545 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ∈ 𝒫 𝐵) |
12 | inelcm 4404 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐴 ∈ 𝒫 𝐵) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅) | |
13 | 9, 11, 12 | syl2anc 585 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅) |
14 | pweq 4553 | . . . . . 6 ⊢ (𝑥 = 𝐵 → 𝒫 𝑥 = 𝒫 𝐵) | |
15 | 14 | ineq2d 4152 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐹 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝐵)) |
16 | 15 | neeq1d 3001 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐵) ≠ ∅)) |
17 | eleq1 2824 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐹 ↔ 𝐵 ∈ 𝐹)) | |
18 | 16, 17 | imbi12d 345 | . . 3 ⊢ (𝑥 = 𝐵 → (((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹) ↔ ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵 ∈ 𝐹))) |
19 | 18 | rspccv 3563 | . 2 ⊢ (∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹) → (𝐵 ∈ 𝒫 𝑋 → ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵 ∈ 𝐹))) |
20 | 3, 8, 13, 19 | syl3c 66 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∀wral 3062 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 𝒫 cpw 4539 dom cdm 5600 ‘cfv 6458 fBascfbas 20630 Filcfil 23041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fv 6466 df-fil 23042 |
This theorem is referenced by: filin 23050 filtop 23051 isfil2 23052 infil 23059 fgfil 23071 fgabs 23075 filconn 23079 filuni 23081 trfil2 23083 trfg 23087 isufil2 23104 ufprim 23105 ufileu 23115 filufint 23116 elfm3 23146 rnelfm 23149 fmfnfmlem2 23151 fmfnfmlem4 23153 flimopn 23171 flimrest 23179 flimfnfcls 23224 fclscmpi 23225 alexsublem 23240 metust 23759 cfil3i 24478 cfilfcls 24483 iscmet3lem2 24501 equivcfil 24508 relcmpcmet 24527 minveclem4 24641 fgmin 34604 |
Copyright terms: Public domain | W3C validator |