MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filss Structured version   Visualization version   GIF version

Theorem filss 23773
Description: A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filss ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐵𝐹)

Proof of Theorem filss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfil 23767 . . . 4 (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
21simprbi 496 . . 3 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
32adantr 480 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
4 elfvdm 6877 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ dom Fil)
5 simp2 1137 . . 3 ((𝐴𝐹𝐵𝑋𝐴𝐵) → 𝐵𝑋)
6 elpw2g 5283 . . . 4 (𝑋 ∈ dom Fil → (𝐵 ∈ 𝒫 𝑋𝐵𝑋))
76biimpar 477 . . 3 ((𝑋 ∈ dom Fil ∧ 𝐵𝑋) → 𝐵 ∈ 𝒫 𝑋)
84, 5, 7syl2an 596 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐵 ∈ 𝒫 𝑋)
9 simpr1 1195 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐴𝐹)
10 simpr3 1197 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐴𝐵)
119, 10elpwd 4565 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐴 ∈ 𝒫 𝐵)
12 inelcm 4424 . . 3 ((𝐴𝐹𝐴 ∈ 𝒫 𝐵) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅)
139, 11, 12syl2anc 584 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅)
14 pweq 4573 . . . . . 6 (𝑥 = 𝐵 → 𝒫 𝑥 = 𝒫 𝐵)
1514ineq2d 4179 . . . . 5 (𝑥 = 𝐵 → (𝐹 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝐵))
1615neeq1d 2984 . . . 4 (𝑥 = 𝐵 → ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐵) ≠ ∅))
17 eleq1 2816 . . . 4 (𝑥 = 𝐵 → (𝑥𝐹𝐵𝐹))
1816, 17imbi12d 344 . . 3 (𝑥 = 𝐵 → (((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹) ↔ ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵𝐹)))
1918rspccv 3582 . 2 (∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹) → (𝐵 ∈ 𝒫 𝑋 → ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵𝐹)))
203, 8, 13, 19syl3c 66 1 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐵𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  dom cdm 5631  cfv 6499  fBascfbas 21284  Filcfil 23765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fv 6507  df-fil 23766
This theorem is referenced by:  filin  23774  filtop  23775  isfil2  23776  infil  23783  fgfil  23795  fgabs  23799  filconn  23803  filuni  23805  trfil2  23807  trfg  23811  isufil2  23828  ufprim  23829  ufileu  23839  filufint  23840  elfm3  23870  rnelfm  23873  fmfnfmlem2  23875  fmfnfmlem4  23877  flimopn  23895  flimrest  23903  flimfnfcls  23948  fclscmpi  23949  alexsublem  23964  metust  24479  cfil3i  25202  cfilfcls  25207  iscmet3lem2  25225  equivcfil  25232  relcmpcmet  25251  minveclem4  25365  fgmin  36351
  Copyright terms: Public domain W3C validator