| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filss | Structured version Visualization version GIF version | ||
| Description: A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfil 23734 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹)) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹)) |
| 4 | elfvdm 6895 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ dom Fil) | |
| 5 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ 𝑋) | |
| 6 | elpw2g 5288 | . . . 4 ⊢ (𝑋 ∈ dom Fil → (𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋)) | |
| 7 | 6 | biimpar 477 | . . 3 ⊢ ((𝑋 ∈ dom Fil ∧ 𝐵 ⊆ 𝑋) → 𝐵 ∈ 𝒫 𝑋) |
| 8 | 4, 5, 7 | syl2an 596 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝒫 𝑋) |
| 9 | simpr1 1195 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ∈ 𝐹) | |
| 10 | simpr3 1197 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ⊆ 𝐵) | |
| 11 | 9, 10 | elpwd 4569 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ∈ 𝒫 𝐵) |
| 12 | inelcm 4428 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐴 ∈ 𝒫 𝐵) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅) | |
| 13 | 9, 11, 12 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅) |
| 14 | pweq 4577 | . . . . . 6 ⊢ (𝑥 = 𝐵 → 𝒫 𝑥 = 𝒫 𝐵) | |
| 15 | 14 | ineq2d 4183 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐹 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝐵)) |
| 16 | 15 | neeq1d 2984 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐵) ≠ ∅)) |
| 17 | eleq1 2816 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐹 ↔ 𝐵 ∈ 𝐹)) | |
| 18 | 16, 17 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐵 → (((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹) ↔ ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵 ∈ 𝐹))) |
| 19 | 18 | rspccv 3585 | . 2 ⊢ (∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹) → (𝐵 ∈ 𝒫 𝑋 → ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵 ∈ 𝐹))) |
| 20 | 3, 8, 13, 19 | syl3c 66 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 dom cdm 5638 ‘cfv 6511 fBascfbas 21252 Filcfil 23732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-fil 23733 |
| This theorem is referenced by: filin 23741 filtop 23742 isfil2 23743 infil 23750 fgfil 23762 fgabs 23766 filconn 23770 filuni 23772 trfil2 23774 trfg 23778 isufil2 23795 ufprim 23796 ufileu 23806 filufint 23807 elfm3 23837 rnelfm 23840 fmfnfmlem2 23842 fmfnfmlem4 23844 flimopn 23862 flimrest 23870 flimfnfcls 23915 fclscmpi 23916 alexsublem 23931 metust 24446 cfil3i 25169 cfilfcls 25174 iscmet3lem2 25192 equivcfil 25199 relcmpcmet 25218 minveclem4 25332 fgmin 36358 |
| Copyright terms: Public domain | W3C validator |