MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filss Structured version   Visualization version   GIF version

Theorem filss 23049
Description: A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filss ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐵𝐹)

Proof of Theorem filss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfil 23043 . . . 4 (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
21simprbi 498 . . 3 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
32adantr 482 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
4 elfvdm 6838 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ dom Fil)
5 simp2 1137 . . 3 ((𝐴𝐹𝐵𝑋𝐴𝐵) → 𝐵𝑋)
6 elpw2g 5277 . . . 4 (𝑋 ∈ dom Fil → (𝐵 ∈ 𝒫 𝑋𝐵𝑋))
76biimpar 479 . . 3 ((𝑋 ∈ dom Fil ∧ 𝐵𝑋) → 𝐵 ∈ 𝒫 𝑋)
84, 5, 7syl2an 597 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐵 ∈ 𝒫 𝑋)
9 simpr1 1194 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐴𝐹)
10 simpr3 1196 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐴𝐵)
119, 10elpwd 4545 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐴 ∈ 𝒫 𝐵)
12 inelcm 4404 . . 3 ((𝐴𝐹𝐴 ∈ 𝒫 𝐵) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅)
139, 11, 12syl2anc 585 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅)
14 pweq 4553 . . . . . 6 (𝑥 = 𝐵 → 𝒫 𝑥 = 𝒫 𝐵)
1514ineq2d 4152 . . . . 5 (𝑥 = 𝐵 → (𝐹 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝐵))
1615neeq1d 3001 . . . 4 (𝑥 = 𝐵 → ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐵) ≠ ∅))
17 eleq1 2824 . . . 4 (𝑥 = 𝐵 → (𝑥𝐹𝐵𝐹))
1816, 17imbi12d 345 . . 3 (𝑥 = 𝐵 → (((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹) ↔ ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵𝐹)))
1918rspccv 3563 . 2 (∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹) → (𝐵 ∈ 𝒫 𝑋 → ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵𝐹)))
203, 8, 13, 19syl3c 66 1 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐵𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  wne 2941  wral 3062  cin 3891  wss 3892  c0 4262  𝒫 cpw 4539  dom cdm 5600  cfv 6458  fBascfbas 20630  Filcfil 23041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fv 6466  df-fil 23042
This theorem is referenced by:  filin  23050  filtop  23051  isfil2  23052  infil  23059  fgfil  23071  fgabs  23075  filconn  23079  filuni  23081  trfil2  23083  trfg  23087  isufil2  23104  ufprim  23105  ufileu  23115  filufint  23116  elfm3  23146  rnelfm  23149  fmfnfmlem2  23151  fmfnfmlem4  23153  flimopn  23171  flimrest  23179  flimfnfcls  23224  fclscmpi  23225  alexsublem  23240  metust  23759  cfil3i  24478  cfilfcls  24483  iscmet3lem2  24501  equivcfil  24508  relcmpcmet  24527  minveclem4  24641  fgmin  34604
  Copyright terms: Public domain W3C validator