| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filss | Structured version Visualization version GIF version | ||
| Description: A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfil 23762 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹)) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹)) |
| 4 | elfvdm 6856 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ dom Fil) | |
| 5 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ 𝑋) | |
| 6 | elpw2g 5269 | . . . 4 ⊢ (𝑋 ∈ dom Fil → (𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋)) | |
| 7 | 6 | biimpar 477 | . . 3 ⊢ ((𝑋 ∈ dom Fil ∧ 𝐵 ⊆ 𝑋) → 𝐵 ∈ 𝒫 𝑋) |
| 8 | 4, 5, 7 | syl2an 596 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝒫 𝑋) |
| 9 | simpr1 1195 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ∈ 𝐹) | |
| 10 | simpr3 1197 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ⊆ 𝐵) | |
| 11 | 9, 10 | elpwd 4553 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ∈ 𝒫 𝐵) |
| 12 | inelcm 4412 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐴 ∈ 𝒫 𝐵) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅) | |
| 13 | 9, 11, 12 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅) |
| 14 | pweq 4561 | . . . . . 6 ⊢ (𝑥 = 𝐵 → 𝒫 𝑥 = 𝒫 𝐵) | |
| 15 | 14 | ineq2d 4167 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐹 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝐵)) |
| 16 | 15 | neeq1d 2987 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐵) ≠ ∅)) |
| 17 | eleq1 2819 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐹 ↔ 𝐵 ∈ 𝐹)) | |
| 18 | 16, 17 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐵 → (((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹) ↔ ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵 ∈ 𝐹))) |
| 19 | 18 | rspccv 3569 | . 2 ⊢ (∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹) → (𝐵 ∈ 𝒫 𝑋 → ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵 ∈ 𝐹))) |
| 20 | 3, 8, 13, 19 | syl3c 66 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 dom cdm 5614 ‘cfv 6481 fBascfbas 21279 Filcfil 23760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-fil 23761 |
| This theorem is referenced by: filin 23769 filtop 23770 isfil2 23771 infil 23778 fgfil 23790 fgabs 23794 filconn 23798 filuni 23800 trfil2 23802 trfg 23806 isufil2 23823 ufprim 23824 ufileu 23834 filufint 23835 elfm3 23865 rnelfm 23868 fmfnfmlem2 23870 fmfnfmlem4 23872 flimopn 23890 flimrest 23898 flimfnfcls 23943 fclscmpi 23944 alexsublem 23959 metust 24473 cfil3i 25196 cfilfcls 25201 iscmet3lem2 25219 equivcfil 25226 relcmpcmet 25245 minveclem4 25359 fgmin 36412 |
| Copyright terms: Public domain | W3C validator |