MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filss Structured version   Visualization version   GIF version

Theorem filss 23796
Description: A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filss ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐵𝐹)

Proof of Theorem filss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfil 23790 . . . 4 (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
21simprbi 496 . . 3 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
32adantr 480 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹))
4 elfvdm 6918 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ dom Fil)
5 simp2 1137 . . 3 ((𝐴𝐹𝐵𝑋𝐴𝐵) → 𝐵𝑋)
6 elpw2g 5308 . . . 4 (𝑋 ∈ dom Fil → (𝐵 ∈ 𝒫 𝑋𝐵𝑋))
76biimpar 477 . . 3 ((𝑋 ∈ dom Fil ∧ 𝐵𝑋) → 𝐵 ∈ 𝒫 𝑋)
84, 5, 7syl2an 596 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐵 ∈ 𝒫 𝑋)
9 simpr1 1195 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐴𝐹)
10 simpr3 1197 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐴𝐵)
119, 10elpwd 4586 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐴 ∈ 𝒫 𝐵)
12 inelcm 4445 . . 3 ((𝐴𝐹𝐴 ∈ 𝒫 𝐵) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅)
139, 11, 12syl2anc 584 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → (𝐹 ∩ 𝒫 𝐵) ≠ ∅)
14 pweq 4594 . . . . . 6 (𝑥 = 𝐵 → 𝒫 𝑥 = 𝒫 𝐵)
1514ineq2d 4200 . . . . 5 (𝑥 = 𝐵 → (𝐹 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝐵))
1615neeq1d 2992 . . . 4 (𝑥 = 𝐵 → ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝐵) ≠ ∅))
17 eleq1 2823 . . . 4 (𝑥 = 𝐵 → (𝑥𝐹𝐵𝐹))
1816, 17imbi12d 344 . . 3 (𝑥 = 𝐵 → (((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹) ↔ ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵𝐹)))
1918rspccv 3603 . 2 (∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹) → (𝐵 ∈ 𝒫 𝑋 → ((𝐹 ∩ 𝒫 𝐵) ≠ ∅ → 𝐵𝐹)))
203, 8, 13, 19syl3c 66 1 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐵𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580  dom cdm 5659  cfv 6536  fBascfbas 21308  Filcfil 23788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-fil 23789
This theorem is referenced by:  filin  23797  filtop  23798  isfil2  23799  infil  23806  fgfil  23818  fgabs  23822  filconn  23826  filuni  23828  trfil2  23830  trfg  23834  isufil2  23851  ufprim  23852  ufileu  23862  filufint  23863  elfm3  23893  rnelfm  23896  fmfnfmlem2  23898  fmfnfmlem4  23900  flimopn  23918  flimrest  23926  flimfnfcls  23971  fclscmpi  23972  alexsublem  23987  metust  24502  cfil3i  25226  cfilfcls  25231  iscmet3lem2  25249  equivcfil  25256  relcmpcmet  25275  minveclem4  25389  fgmin  36393
  Copyright terms: Public domain W3C validator