| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indval | Structured version Visualization version GIF version | ||
| Description: Value of the indicator function generator for a set 𝐴 and a domain 𝑂. (Contributed by Thierry Arnoux, 2-Feb-2017.) |
| Ref | Expression |
|---|---|
| indval | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indv 32831 | . . 3 ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
| 3 | eleq2 2820 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑥 ∈ 𝑎 ↔ 𝑥 ∈ 𝐴)) | |
| 4 | 3 | ifbid 4499 | . . . 4 ⊢ (𝑎 = 𝐴 → if(𝑥 ∈ 𝑎, 1, 0) = if(𝑥 ∈ 𝐴, 1, 0)) |
| 5 | 4 | mpteq2dv 5185 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
| 6 | 5 | adantl 481 | . 2 ⊢ (((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) ∧ 𝑎 = 𝐴) → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
| 7 | ssexg 5261 | . . . 4 ⊢ ((𝐴 ⊆ 𝑂 ∧ 𝑂 ∈ 𝑉) → 𝐴 ∈ V) | |
| 8 | 7 | ancoms 458 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ∈ V) |
| 9 | simpr 484 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ⊆ 𝑂) | |
| 10 | 8, 9 | elpwd 4556 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ∈ 𝒫 𝑂) |
| 11 | mptexg 7155 | . . 3 ⊢ (𝑂 ∈ 𝑉 → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0)) ∈ V) | |
| 12 | 11 | adantr 480 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0)) ∈ V) |
| 13 | 2, 6, 10, 12 | fvmptd 6936 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 ifcif 4475 𝒫 cpw 4550 ↦ cmpt 5172 ‘cfv 6481 0cc0 11006 1c1 11007 𝟭cind 32829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ind 32830 |
| This theorem is referenced by: indval2 32833 indf 32834 indfval 32835 |
| Copyright terms: Public domain | W3C validator |