Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > indval | Structured version Visualization version GIF version |
Description: Value of the indicator function generator for a set 𝐴 and a domain 𝑂. (Contributed by Thierry Arnoux, 2-Feb-2017.) |
Ref | Expression |
---|---|
indval | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indv 31499 | . . 3 ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) | |
2 | 1 | adantr 484 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
3 | eleq2 2840 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑥 ∈ 𝑎 ↔ 𝑥 ∈ 𝐴)) | |
4 | 3 | ifbid 4443 | . . . 4 ⊢ (𝑎 = 𝐴 → if(𝑥 ∈ 𝑎, 1, 0) = if(𝑥 ∈ 𝐴, 1, 0)) |
5 | 4 | mpteq2dv 5128 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
6 | 5 | adantl 485 | . 2 ⊢ (((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) ∧ 𝑎 = 𝐴) → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
7 | ssexg 5193 | . . . 4 ⊢ ((𝐴 ⊆ 𝑂 ∧ 𝑂 ∈ 𝑉) → 𝐴 ∈ V) | |
8 | 7 | ancoms 462 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ∈ V) |
9 | simpr 488 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ⊆ 𝑂) | |
10 | 8, 9 | elpwd 4502 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ∈ 𝒫 𝑂) |
11 | mptexg 6975 | . . 3 ⊢ (𝑂 ∈ 𝑉 → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0)) ∈ V) | |
12 | 11 | adantr 484 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0)) ∈ V) |
13 | 2, 6, 10, 12 | fvmptd 6766 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3858 ifcif 4420 𝒫 cpw 4494 ↦ cmpt 5112 ‘cfv 6335 0cc0 10575 1c1 10576 𝟭cind 31497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ind 31498 |
This theorem is referenced by: indval2 31501 indf 31502 indfval 31503 |
Copyright terms: Public domain | W3C validator |