Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indval Structured version   Visualization version   GIF version

Theorem indval 32809
Description: Value of the indicator function generator for a set 𝐴 and a domain 𝑂. (Contributed by Thierry Arnoux, 2-Feb-2017.)
Assertion
Ref Expression
indval ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
Distinct variable groups:   𝑥,𝑂   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem indval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 indv 32808 . . 3 (𝑂𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
21adantr 480 . 2 ((𝑂𝑉𝐴𝑂) → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
3 eleq2 2817 . . . . 5 (𝑎 = 𝐴 → (𝑥𝑎𝑥𝐴))
43ifbid 4502 . . . 4 (𝑎 = 𝐴 → if(𝑥𝑎, 1, 0) = if(𝑥𝐴, 1, 0))
54mpteq2dv 5189 . . 3 (𝑎 = 𝐴 → (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0)) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
65adantl 481 . 2 (((𝑂𝑉𝐴𝑂) ∧ 𝑎 = 𝐴) → (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0)) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
7 ssexg 5265 . . . 4 ((𝐴𝑂𝑂𝑉) → 𝐴 ∈ V)
87ancoms 458 . . 3 ((𝑂𝑉𝐴𝑂) → 𝐴 ∈ V)
9 simpr 484 . . 3 ((𝑂𝑉𝐴𝑂) → 𝐴𝑂)
108, 9elpwd 4559 . 2 ((𝑂𝑉𝐴𝑂) → 𝐴 ∈ 𝒫 𝑂)
11 mptexg 7161 . . 3 (𝑂𝑉 → (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)) ∈ V)
1211adantr 480 . 2 ((𝑂𝑉𝐴𝑂) → (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)) ∈ V)
132, 6, 10, 12fvmptd 6941 1 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905  ifcif 4478  𝒫 cpw 4553  cmpt 5176  cfv 6486  0cc0 11028  1c1 11029  𝟭cind 32806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ind 32807
This theorem is referenced by:  indval2  32810  indf  32811  indfval  32812
  Copyright terms: Public domain W3C validator