Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indval Structured version   Visualization version   GIF version

Theorem indval 33977
Description: Value of the indicator function generator for a set 𝐴 and a domain 𝑂. (Contributed by Thierry Arnoux, 2-Feb-2017.)
Assertion
Ref Expression
indval ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
Distinct variable groups:   𝑥,𝑂   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem indval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 indv 33976 . . 3 (𝑂𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
21adantr 480 . 2 ((𝑂𝑉𝐴𝑂) → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
3 eleq2 2833 . . . . 5 (𝑎 = 𝐴 → (𝑥𝑎𝑥𝐴))
43ifbid 4571 . . . 4 (𝑎 = 𝐴 → if(𝑥𝑎, 1, 0) = if(𝑥𝐴, 1, 0))
54mpteq2dv 5268 . . 3 (𝑎 = 𝐴 → (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0)) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
65adantl 481 . 2 (((𝑂𝑉𝐴𝑂) ∧ 𝑎 = 𝐴) → (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0)) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
7 ssexg 5341 . . . 4 ((𝐴𝑂𝑂𝑉) → 𝐴 ∈ V)
87ancoms 458 . . 3 ((𝑂𝑉𝐴𝑂) → 𝐴 ∈ V)
9 simpr 484 . . 3 ((𝑂𝑉𝐴𝑂) → 𝐴𝑂)
108, 9elpwd 4628 . 2 ((𝑂𝑉𝐴𝑂) → 𝐴 ∈ 𝒫 𝑂)
11 mptexg 7258 . . 3 (𝑂𝑉 → (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)) ∈ V)
1211adantr 480 . 2 ((𝑂𝑉𝐴𝑂) → (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)) ∈ V)
132, 6, 10, 12fvmptd 7036 1 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  ifcif 4548  𝒫 cpw 4622  cmpt 5249  cfv 6573  0cc0 11184  1c1 11185  𝟭cind 33974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ind 33975
This theorem is referenced by:  indval2  33978  indf  33979  indfval  33980
  Copyright terms: Public domain W3C validator