Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > indval | Structured version Visualization version GIF version |
Description: Value of the indicator function generator for a set 𝐴 and a domain 𝑂. (Contributed by Thierry Arnoux, 2-Feb-2017.) |
Ref | Expression |
---|---|
indval | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indv 32029 | . . 3 ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) | |
2 | 1 | adantr 482 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
3 | eleq2 2825 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑥 ∈ 𝑎 ↔ 𝑥 ∈ 𝐴)) | |
4 | 3 | ifbid 4488 | . . . 4 ⊢ (𝑎 = 𝐴 → if(𝑥 ∈ 𝑎, 1, 0) = if(𝑥 ∈ 𝐴, 1, 0)) |
5 | 4 | mpteq2dv 5183 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
6 | 5 | adantl 483 | . 2 ⊢ (((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) ∧ 𝑎 = 𝐴) → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
7 | ssexg 5256 | . . . 4 ⊢ ((𝐴 ⊆ 𝑂 ∧ 𝑂 ∈ 𝑉) → 𝐴 ∈ V) | |
8 | 7 | ancoms 460 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ∈ V) |
9 | simpr 486 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ⊆ 𝑂) | |
10 | 8, 9 | elpwd 4545 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ∈ 𝒫 𝑂) |
11 | mptexg 7129 | . . 3 ⊢ (𝑂 ∈ 𝑉 → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0)) ∈ V) | |
12 | 11 | adantr 482 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0)) ∈ V) |
13 | 2, 6, 10, 12 | fvmptd 6914 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ⊆ wss 3892 ifcif 4465 𝒫 cpw 4539 ↦ cmpt 5164 ‘cfv 6458 0cc0 10921 1c1 10922 𝟭cind 32027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ind 32028 |
This theorem is referenced by: indval2 32031 indf 32032 indfval 32033 |
Copyright terms: Public domain | W3C validator |