![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > indval | Structured version Visualization version GIF version |
Description: Value of the indicator function generator for a set 𝐴 and a domain 𝑂. (Contributed by Thierry Arnoux, 2-Feb-2017.) |
Ref | Expression |
---|---|
indval | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indv 33631 | . . 3 ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
3 | eleq2 2818 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑥 ∈ 𝑎 ↔ 𝑥 ∈ 𝐴)) | |
4 | 3 | ifbid 4552 | . . . 4 ⊢ (𝑎 = 𝐴 → if(𝑥 ∈ 𝑎, 1, 0) = if(𝑥 ∈ 𝐴, 1, 0)) |
5 | 4 | mpteq2dv 5250 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
6 | 5 | adantl 481 | . 2 ⊢ (((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) ∧ 𝑎 = 𝐴) → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
7 | ssexg 5323 | . . . 4 ⊢ ((𝐴 ⊆ 𝑂 ∧ 𝑂 ∈ 𝑉) → 𝐴 ∈ V) | |
8 | 7 | ancoms 458 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ∈ V) |
9 | simpr 484 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ⊆ 𝑂) | |
10 | 8, 9 | elpwd 4609 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝐴 ∈ 𝒫 𝑂) |
11 | mptexg 7233 | . . 3 ⊢ (𝑂 ∈ 𝑉 → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0)) ∈ V) | |
12 | 11 | adantr 480 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0)) ∈ V) |
13 | 2, 6, 10, 12 | fvmptd 7012 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ⊆ wss 3947 ifcif 4529 𝒫 cpw 4603 ↦ cmpt 5231 ‘cfv 6548 0cc0 11139 1c1 11140 𝟭cind 33629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ind 33630 |
This theorem is referenced by: indval2 33633 indf 33634 indfval 33635 |
Copyright terms: Public domain | W3C validator |