Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indval Structured version   Visualization version   GIF version

Theorem indval 32832
Description: Value of the indicator function generator for a set 𝐴 and a domain 𝑂. (Contributed by Thierry Arnoux, 2-Feb-2017.)
Assertion
Ref Expression
indval ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
Distinct variable groups:   𝑥,𝑂   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem indval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 indv 32831 . . 3 (𝑂𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
21adantr 480 . 2 ((𝑂𝑉𝐴𝑂) → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
3 eleq2 2820 . . . . 5 (𝑎 = 𝐴 → (𝑥𝑎𝑥𝐴))
43ifbid 4499 . . . 4 (𝑎 = 𝐴 → if(𝑥𝑎, 1, 0) = if(𝑥𝐴, 1, 0))
54mpteq2dv 5185 . . 3 (𝑎 = 𝐴 → (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0)) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
65adantl 481 . 2 (((𝑂𝑉𝐴𝑂) ∧ 𝑎 = 𝐴) → (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0)) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
7 ssexg 5261 . . . 4 ((𝐴𝑂𝑂𝑉) → 𝐴 ∈ V)
87ancoms 458 . . 3 ((𝑂𝑉𝐴𝑂) → 𝐴 ∈ V)
9 simpr 484 . . 3 ((𝑂𝑉𝐴𝑂) → 𝐴𝑂)
108, 9elpwd 4556 . 2 ((𝑂𝑉𝐴𝑂) → 𝐴 ∈ 𝒫 𝑂)
11 mptexg 7155 . . 3 (𝑂𝑉 → (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)) ∈ V)
1211adantr 480 . 2 ((𝑂𝑉𝐴𝑂) → (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)) ∈ V)
132, 6, 10, 12fvmptd 6936 1 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  ifcif 4475  𝒫 cpw 4550  cmpt 5172  cfv 6481  0cc0 11006  1c1 11007  𝟭cind 32829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ind 32830
This theorem is referenced by:  indval2  32833  indf  32834  indfval  32835
  Copyright terms: Public domain W3C validator