Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3llem1 | Structured version Visualization version GIF version |
Description: Lemma for iscnrm3l 46739. Closed sets in the subspace are subsets of the underlying set of the original topology. (Contributed by Zhi Wang, 4-Sep-2024.) |
Ref | Expression |
---|---|
iscnrm3llem1 | ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → (𝐶 ∈ 𝒫 ∪ 𝐽 ∧ 𝐷 ∈ 𝒫 ∪ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp22 1208 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍))) | |
2 | simp1 1137 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → 𝐽 ∈ Top) | |
3 | eqidd 2739 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → ∪ 𝐽 = ∪ 𝐽) | |
4 | simp21 1207 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → 𝑍 ∈ 𝒫 ∪ 𝐽) | |
5 | 4 | elpwid 4568 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → 𝑍 ⊆ ∪ 𝐽) |
6 | eqidd 2739 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → (𝐽 ↾t 𝑍) = (𝐽 ↾t 𝑍)) | |
7 | 2, 3, 5, 6, 1 | restcls2lem 46700 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → 𝐶 ⊆ 𝑍) |
8 | 7, 5 | sstrd 3953 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → 𝐶 ⊆ ∪ 𝐽) |
9 | 1, 8 | elpwd 4565 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → 𝐶 ∈ 𝒫 ∪ 𝐽) |
10 | simp23 1209 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) | |
11 | 2, 3, 5, 6, 10 | restcls2lem 46700 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → 𝐷 ⊆ 𝑍) |
12 | 11, 5 | sstrd 3953 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → 𝐷 ⊆ ∪ 𝐽) |
13 | 10, 12 | elpwd 4565 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → 𝐷 ∈ 𝒫 ∪ 𝐽) |
14 | 9, 13 | jca 513 | 1 ⊢ ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 ∪ 𝐽 ∧ 𝐶 ∈ (Clsd‘(𝐽 ↾t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽 ↾t 𝑍))) ∧ (𝐶 ∩ 𝐷) = ∅) → (𝐶 ∈ 𝒫 ∪ 𝐽 ∧ 𝐷 ∈ 𝒫 ∪ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∩ cin 3908 ∅c0 4281 𝒫 cpw 4559 ∪ cuni 4864 ‘cfv 6492 (class class class)co 7350 ↾t crest 17237 Topctop 22165 Clsdccld 22290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7663 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-ral 3064 df-rex 3073 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-int 4907 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6444 df-fun 6494 df-fn 6495 df-f 6496 df-f1 6497 df-fo 6498 df-f1o 6499 df-fv 6500 df-ov 7353 df-oprab 7354 df-mpo 7355 df-om 7794 df-1st 7912 df-2nd 7913 df-en 8818 df-fin 8821 df-fi 9281 df-rest 17239 df-topgen 17260 df-top 22166 df-topon 22183 df-bases 22219 df-cld 22293 |
This theorem is referenced by: iscnrm3l 46739 |
Copyright terms: Public domain | W3C validator |