MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelvalx Structured version   Visualization version   GIF version

Theorem lsmelvalx 19658
Description: Subspace sum membership (for a group or vector space). Extended domain version of lsmelval 19667. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v 𝐵 = (Base‘𝐺)
lsmfval.a + = (+g𝐺)
lsmfval.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmelvalx ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧)))
Distinct variable groups:   𝑦,𝑧, +   𝑦,𝐵,𝑧   𝑦,𝑇,𝑧   𝑦,𝑋,𝑧   𝑦,𝐺,𝑧   𝑦,𝑈,𝑧
Allowed substitution hints:   (𝑦,𝑧)   𝑉(𝑦,𝑧)

Proof of Theorem lsmelvalx
StepHypRef Expression
1 lsmfval.v . . . 4 𝐵 = (Base‘𝐺)
2 lsmfval.a . . . 4 + = (+g𝐺)
3 lsmfval.s . . . 4 = (LSSum‘𝐺)
41, 2, 3lsmvalx 19657 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧)))
54eleq2d 2827 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑋 ∈ (𝑇 𝑈) ↔ 𝑋 ∈ ran (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧))))
6 eqid 2737 . . 3 (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧)) = (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧))
7 ovex 7464 . . 3 (𝑦 + 𝑧) ∈ V
86, 7elrnmpo 7569 . 2 (𝑋 ∈ ran (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧)) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧))
95, 8bitrdi 287 1 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  wss 3951  ran crn 5686  cfv 6561  (class class class)co 7431  cmpo 7433  Basecbs 17247  +gcplusg 17297  LSSumclsm 19652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-lsm 19654
This theorem is referenced by:  lsmelvalix  19659  lsmless1x  19662  lsmless2x  19663  lsmelval  19667  lsmsubm  19671  lsmass  19687  lsmcomx  19874  lsmcss  21710  elgrplsmsn  33418  elringlsm  33421  lsmssass  33430  grplsm0l  33431  grplsmid  33432  ssdifidlprm  33486  mxidlprm  33498  dimkerim  33678
  Copyright terms: Public domain W3C validator