| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmelvalx | Structured version Visualization version GIF version | ||
| Description: Subspace sum membership (for a group or vector space). Extended domain version of lsmelval 19635. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
| lsmfval.a | ⊢ + = (+g‘𝐺) |
| lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
| Ref | Expression |
|---|---|
| lsmelvalx | ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmfval.v | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | lsmfval.a | . . . 4 ⊢ + = (+g‘𝐺) | |
| 3 | lsmfval.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
| 4 | 1, 2, 3 | lsmvalx 19625 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧))) |
| 5 | 4 | eleq2d 2821 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ 𝑋 ∈ ran (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)))) |
| 6 | eqid 2736 | . . 3 ⊢ (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)) = (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)) | |
| 7 | ovex 7443 | . . 3 ⊢ (𝑦 + 𝑧) ∈ V | |
| 8 | 6, 7 | elrnmpo 7548 | . 2 ⊢ (𝑋 ∈ ran (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧)) |
| 9 | 5, 8 | bitrdi 287 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ⊆ wss 3931 ran crn 5660 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 Basecbs 17233 +gcplusg 17276 LSSumclsm 19620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-lsm 19622 |
| This theorem is referenced by: lsmelvalix 19627 lsmless1x 19630 lsmless2x 19631 lsmelval 19635 lsmsubm 19639 lsmass 19655 lsmcomx 19842 lsmcss 21657 elgrplsmsn 33410 elringlsm 33413 lsmssass 33422 grplsm0l 33423 grplsmid 33424 ssdifidlprm 33478 mxidlprm 33490 dimkerim 33672 |
| Copyright terms: Public domain | W3C validator |