MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelvalx Structured version   Visualization version   GIF version

Theorem lsmelvalx 18765
Description: Subspace sum membership (for a group or vector space). Extended domain version of lsmelval 18774. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v 𝐵 = (Base‘𝐺)
lsmfval.a + = (+g𝐺)
lsmfval.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmelvalx ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧)))
Distinct variable groups:   𝑦,𝑧, +   𝑦,𝐵,𝑧   𝑦,𝑇,𝑧   𝑦,𝑋,𝑧   𝑦,𝐺,𝑧   𝑦,𝑈,𝑧
Allowed substitution hints:   (𝑦,𝑧)   𝑉(𝑦,𝑧)

Proof of Theorem lsmelvalx
StepHypRef Expression
1 lsmfval.v . . . 4 𝐵 = (Base‘𝐺)
2 lsmfval.a . . . 4 + = (+g𝐺)
3 lsmfval.s . . . 4 = (LSSum‘𝐺)
41, 2, 3lsmvalx 18764 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧)))
54eleq2d 2898 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑋 ∈ (𝑇 𝑈) ↔ 𝑋 ∈ ran (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧))))
6 eqid 2821 . . 3 (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧)) = (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧))
7 ovex 7189 . . 3 (𝑦 + 𝑧) ∈ V
86, 7elrnmpo 7287 . 2 (𝑋 ∈ ran (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧)) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧))
95, 8syl6bb 289 1 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  wss 3936  ran crn 5556  cfv 6355  (class class class)co 7156  cmpo 7158  Basecbs 16483  +gcplusg 16565  LSSumclsm 18759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-lsm 18761
This theorem is referenced by:  lsmelvalix  18766  lsmless1x  18769  lsmless2x  18770  lsmelval  18774  lsmsubm  18778  lsmass  18795  lsmcomx  18976  lsmcss  20836  elgrplsmsn  30944  elringlsm  30946  mxidlprm  30977  dimkerim  31023
  Copyright terms: Public domain W3C validator