| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmelvalx | Structured version Visualization version GIF version | ||
| Description: Subspace sum membership (for a group or vector space). Extended domain version of lsmelval 19547. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
| lsmfval.a | ⊢ + = (+g‘𝐺) |
| lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
| Ref | Expression |
|---|---|
| lsmelvalx | ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmfval.v | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | lsmfval.a | . . . 4 ⊢ + = (+g‘𝐺) | |
| 3 | lsmfval.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
| 4 | 1, 2, 3 | lsmvalx 19537 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧))) |
| 5 | 4 | eleq2d 2814 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ 𝑋 ∈ ran (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)))) |
| 6 | eqid 2729 | . . 3 ⊢ (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)) = (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)) | |
| 7 | ovex 7386 | . . 3 ⊢ (𝑦 + 𝑧) ∈ V | |
| 8 | 6, 7 | elrnmpo 7489 | . 2 ⊢ (𝑋 ∈ ran (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧)) |
| 9 | 5, 8 | bitrdi 287 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3905 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17139 +gcplusg 17180 LSSumclsm 19532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-lsm 19534 |
| This theorem is referenced by: lsmelvalix 19539 lsmless1x 19542 lsmless2x 19543 lsmelval 19547 lsmsubm 19551 lsmass 19567 lsmcomx 19754 lsmcss 21618 elgrplsmsn 33346 elringlsm 33349 lsmssass 33358 grplsm0l 33359 grplsmid 33360 ssdifidlprm 33414 mxidlprm 33426 dimkerim 33613 |
| Copyright terms: Public domain | W3C validator |