![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmelvalx | Structured version Visualization version GIF version |
Description: Subspace sum membership (for a group or vector space). Extended domain version of lsmelval 18415. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmfval.a | ⊢ + = (+g‘𝐺) |
lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmelvalx | ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmfval.v | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | lsmfval.a | . . . 4 ⊢ + = (+g‘𝐺) | |
3 | lsmfval.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
4 | 1, 2, 3 | lsmvalx 18405 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧))) |
5 | 4 | eleq2d 2892 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ 𝑋 ∈ ran (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)))) |
6 | eqid 2825 | . . 3 ⊢ (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)) = (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)) | |
7 | ovex 6937 | . . 3 ⊢ (𝑦 + 𝑧) ∈ V | |
8 | 6, 7 | elrnmpt2 7033 | . 2 ⊢ (𝑋 ∈ ran (𝑦 ∈ 𝑇, 𝑧 ∈ 𝑈 ↦ (𝑦 + 𝑧)) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧)) |
9 | 5, 8 | syl6bb 279 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦 + 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ∃wrex 3118 ⊆ wss 3798 ran crn 5343 ‘cfv 6123 (class class class)co 6905 ↦ cmpt2 6907 Basecbs 16222 +gcplusg 16305 LSSumclsm 18400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-1st 7428 df-2nd 7429 df-lsm 18402 |
This theorem is referenced by: lsmelvalix 18407 lsmless1x 18410 lsmless2x 18411 lsmelval 18415 lsmsubm 18419 lsmass 18434 lsmcomx 18612 lsmcss 20399 |
Copyright terms: Public domain | W3C validator |