MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelvalx Structured version   Visualization version   GIF version

Theorem lsmelvalx 19682
Description: Subspace sum membership (for a group or vector space). Extended domain version of lsmelval 19691. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v 𝐵 = (Base‘𝐺)
lsmfval.a + = (+g𝐺)
lsmfval.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmelvalx ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧)))
Distinct variable groups:   𝑦,𝑧, +   𝑦,𝐵,𝑧   𝑦,𝑇,𝑧   𝑦,𝑋,𝑧   𝑦,𝐺,𝑧   𝑦,𝑈,𝑧
Allowed substitution hints:   (𝑦,𝑧)   𝑉(𝑦,𝑧)

Proof of Theorem lsmelvalx
StepHypRef Expression
1 lsmfval.v . . . 4 𝐵 = (Base‘𝐺)
2 lsmfval.a . . . 4 + = (+g𝐺)
3 lsmfval.s . . . 4 = (LSSum‘𝐺)
41, 2, 3lsmvalx 19681 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧)))
54eleq2d 2830 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑋 ∈ (𝑇 𝑈) ↔ 𝑋 ∈ ran (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧))))
6 eqid 2740 . . 3 (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧)) = (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧))
7 ovex 7481 . . 3 (𝑦 + 𝑧) ∈ V
86, 7elrnmpo 7586 . 2 (𝑋 ∈ ran (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧)) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧))
95, 8bitrdi 287 1 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  wss 3976  ran crn 5701  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  +gcplusg 17311  LSSumclsm 19676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-lsm 19678
This theorem is referenced by:  lsmelvalix  19683  lsmless1x  19686  lsmless2x  19687  lsmelval  19691  lsmsubm  19695  lsmass  19711  lsmcomx  19898  lsmcss  21733  elgrplsmsn  33383  elringlsm  33386  lsmssass  33395  grplsm0l  33396  grplsmid  33397  ssdifidlprm  33451  mxidlprm  33463  dimkerim  33640
  Copyright terms: Public domain W3C validator