MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgtlen Structured version   Visualization version   GIF version

Theorem efgtlen 19419
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efgtlen ((𝑋𝑊𝐴 ∈ ran (𝑇𝑋)) → (♯‘𝐴) = ((♯‘𝑋) + 2))
Distinct variable groups:   𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧   𝑛,𝑀,𝑣,𝑤   𝑛,𝑊,𝑣,𝑤,𝑦,𝑧   𝑦, ,𝑧   𝑛,𝐼,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑤,𝑣,𝑛)

Proof of Theorem efgtlen
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . . . . 8 = ( ~FG𝐼)
3 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . . . . 8 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
51, 2, 3, 4efgtf 19415 . . . . . . 7 (𝑋𝑊 → ((𝑇𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊))
65simpld 495 . . . . . 6 (𝑋𝑊 → (𝑇𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
76rneqd 5873 . . . . 5 (𝑋𝑊 → ran (𝑇𝑋) = ran (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
87eleq2d 2822 . . . 4 (𝑋𝑊 → (𝐴 ∈ ran (𝑇𝑋) ↔ 𝐴 ∈ ran (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))))
9 eqid 2736 . . . . 5 (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
10 ovex 7362 . . . . 5 (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ V
119, 10elrnmpo 7464 . . . 4 (𝐴 ∈ ran (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ↔ ∃𝑎 ∈ (0...(♯‘𝑋))∃𝑏 ∈ (𝐼 × 2o)𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
128, 11bitrdi 286 . . 3 (𝑋𝑊 → (𝐴 ∈ ran (𝑇𝑋) ↔ ∃𝑎 ∈ (0...(♯‘𝑋))∃𝑏 ∈ (𝐼 × 2o)𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
13 fviss 6895 . . . . . . . . 9 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
141, 13eqsstri 3965 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2o)
15 simpl 483 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑋𝑊)
1614, 15sselid 3929 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑋 ∈ Word (𝐼 × 2o))
17 elfzuz 13345 . . . . . . . . 9 (𝑎 ∈ (0...(♯‘𝑋)) → 𝑎 ∈ (ℤ‘0))
1817ad2antrl 725 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ (ℤ‘0))
19 eluzfz2b 13358 . . . . . . . 8 (𝑎 ∈ (ℤ‘0) ↔ 𝑎 ∈ (0...𝑎))
2018, 19sylib 217 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ (0...𝑎))
21 simprl 768 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ (0...(♯‘𝑋)))
22 simprr 770 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑏 ∈ (𝐼 × 2o))
233efgmf 19406 . . . . . . . . . 10 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
2423ffvelcdmi 7010 . . . . . . . . 9 (𝑏 ∈ (𝐼 × 2o) → (𝑀𝑏) ∈ (𝐼 × 2o))
2522, 24syl 17 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀𝑏) ∈ (𝐼 × 2o))
2622, 25s2cld 14675 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o))
2716, 20, 21, 26spllen 14557 . . . . . 6 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = ((♯‘𝑋) + ((♯‘⟨“𝑏(𝑀𝑏)”⟩) − (𝑎𝑎))))
28 s2len 14693 . . . . . . . . . 10 (♯‘⟨“𝑏(𝑀𝑏)”⟩) = 2
2928a1i 11 . . . . . . . . 9 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘⟨“𝑏(𝑀𝑏)”⟩) = 2)
30 eluzelcn 12687 . . . . . . . . . . 11 (𝑎 ∈ (ℤ‘0) → 𝑎 ∈ ℂ)
3118, 30syl 17 . . . . . . . . . 10 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ ℂ)
3231subidd 11413 . . . . . . . . 9 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎𝑎) = 0)
3329, 32oveq12d 7347 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘⟨“𝑏(𝑀𝑏)”⟩) − (𝑎𝑎)) = (2 − 0))
34 2cn 12141 . . . . . . . . 9 2 ∈ ℂ
3534subid1i 11386 . . . . . . . 8 (2 − 0) = 2
3633, 35eqtrdi 2792 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘⟨“𝑏(𝑀𝑏)”⟩) − (𝑎𝑎)) = 2)
3736oveq2d 7345 . . . . . 6 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘𝑋) + ((♯‘⟨“𝑏(𝑀𝑏)”⟩) − (𝑎𝑎))) = ((♯‘𝑋) + 2))
3827, 37eqtrd 2776 . . . . 5 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = ((♯‘𝑋) + 2))
39 fveqeq2 6828 . . . . 5 (𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → ((♯‘𝐴) = ((♯‘𝑋) + 2) ↔ (♯‘(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = ((♯‘𝑋) + 2)))
4038, 39syl5ibrcom 246 . . . 4 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → (♯‘𝐴) = ((♯‘𝑋) + 2)))
4140rexlimdvva 3201 . . 3 (𝑋𝑊 → (∃𝑎 ∈ (0...(♯‘𝑋))∃𝑏 ∈ (𝐼 × 2o)𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → (♯‘𝐴) = ((♯‘𝑋) + 2)))
4212, 41sylbid 239 . 2 (𝑋𝑊 → (𝐴 ∈ ran (𝑇𝑋) → (♯‘𝐴) = ((♯‘𝑋) + 2)))
4342imp 407 1 ((𝑋𝑊𝐴 ∈ ran (𝑇𝑋)) → (♯‘𝐴) = ((♯‘𝑋) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wrex 3070  cdif 3894  cop 4578  cotp 4580  cmpt 5172   I cid 5511   × cxp 5612  ran crn 5615  wf 6469  cfv 6473  (class class class)co 7329  cmpo 7331  1oc1o 8352  2oc2o 8353  cc 10962  0cc0 10964   + caddc 10967  cmin 11298  2c2 12121  cuz 12675  ...cfz 13332  chash 14137  Word cword 14309   splice csplice 14552  ⟨“cs2 14645   ~FG cefg 19399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-ot 4581  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-2o 8360  df-er 8561  df-map 8680  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-2 12129  df-n0 12327  df-z 12413  df-uz 12676  df-fz 13333  df-fzo 13476  df-hash 14138  df-word 14310  df-concat 14366  df-s1 14392  df-substr 14444  df-pfx 14474  df-splice 14553  df-s2 14652
This theorem is referenced by:  efgsfo  19432  efgredlemg  19435  efgredlemd  19437  efgredlem  19440  frgpnabllem1  19561
  Copyright terms: Public domain W3C validator