MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgtlen Structured version   Visualization version   GIF version

Theorem efgtlen 19712
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efgtlen ((𝑋𝑊𝐴 ∈ ran (𝑇𝑋)) → (♯‘𝐴) = ((♯‘𝑋) + 2))
Distinct variable groups:   𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧   𝑛,𝑀,𝑣,𝑤   𝑛,𝑊,𝑣,𝑤,𝑦,𝑧   𝑦, ,𝑧   𝑛,𝐼,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑤,𝑣,𝑛)

Proof of Theorem efgtlen
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . . . . 8 = ( ~FG𝐼)
3 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . . . . 8 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
51, 2, 3, 4efgtf 19708 . . . . . . 7 (𝑋𝑊 → ((𝑇𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊))
65simpld 494 . . . . . 6 (𝑋𝑊 → (𝑇𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
76rneqd 5923 . . . . 5 (𝑋𝑊 → ran (𝑇𝑋) = ran (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
87eleq2d 2821 . . . 4 (𝑋𝑊 → (𝐴 ∈ ran (𝑇𝑋) ↔ 𝐴 ∈ ran (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))))
9 eqid 2736 . . . . 5 (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
10 ovex 7443 . . . . 5 (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ V
119, 10elrnmpo 7548 . . . 4 (𝐴 ∈ ran (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ↔ ∃𝑎 ∈ (0...(♯‘𝑋))∃𝑏 ∈ (𝐼 × 2o)𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
128, 11bitrdi 287 . . 3 (𝑋𝑊 → (𝐴 ∈ ran (𝑇𝑋) ↔ ∃𝑎 ∈ (0...(♯‘𝑋))∃𝑏 ∈ (𝐼 × 2o)𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
13 fviss 6961 . . . . . . . . 9 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
141, 13eqsstri 4010 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2o)
15 simpl 482 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑋𝑊)
1614, 15sselid 3961 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑋 ∈ Word (𝐼 × 2o))
17 elfzuz 13542 . . . . . . . . 9 (𝑎 ∈ (0...(♯‘𝑋)) → 𝑎 ∈ (ℤ‘0))
1817ad2antrl 728 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ (ℤ‘0))
19 eluzfz2b 13555 . . . . . . . 8 (𝑎 ∈ (ℤ‘0) ↔ 𝑎 ∈ (0...𝑎))
2018, 19sylib 218 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ (0...𝑎))
21 simprl 770 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ (0...(♯‘𝑋)))
22 simprr 772 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑏 ∈ (𝐼 × 2o))
233efgmf 19699 . . . . . . . . . 10 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
2423ffvelcdmi 7078 . . . . . . . . 9 (𝑏 ∈ (𝐼 × 2o) → (𝑀𝑏) ∈ (𝐼 × 2o))
2522, 24syl 17 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀𝑏) ∈ (𝐼 × 2o))
2622, 25s2cld 14895 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o))
2716, 20, 21, 26spllen 14777 . . . . . 6 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = ((♯‘𝑋) + ((♯‘⟨“𝑏(𝑀𝑏)”⟩) − (𝑎𝑎))))
28 s2len 14913 . . . . . . . . . 10 (♯‘⟨“𝑏(𝑀𝑏)”⟩) = 2
2928a1i 11 . . . . . . . . 9 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘⟨“𝑏(𝑀𝑏)”⟩) = 2)
30 eluzelcn 12869 . . . . . . . . . . 11 (𝑎 ∈ (ℤ‘0) → 𝑎 ∈ ℂ)
3118, 30syl 17 . . . . . . . . . 10 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ ℂ)
3231subidd 11587 . . . . . . . . 9 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎𝑎) = 0)
3329, 32oveq12d 7428 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘⟨“𝑏(𝑀𝑏)”⟩) − (𝑎𝑎)) = (2 − 0))
34 2cn 12320 . . . . . . . . 9 2 ∈ ℂ
3534subid1i 11560 . . . . . . . 8 (2 − 0) = 2
3633, 35eqtrdi 2787 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘⟨“𝑏(𝑀𝑏)”⟩) − (𝑎𝑎)) = 2)
3736oveq2d 7426 . . . . . 6 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘𝑋) + ((♯‘⟨“𝑏(𝑀𝑏)”⟩) − (𝑎𝑎))) = ((♯‘𝑋) + 2))
3827, 37eqtrd 2771 . . . . 5 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = ((♯‘𝑋) + 2))
39 fveqeq2 6890 . . . . 5 (𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → ((♯‘𝐴) = ((♯‘𝑋) + 2) ↔ (♯‘(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = ((♯‘𝑋) + 2)))
4038, 39syl5ibrcom 247 . . . 4 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → (♯‘𝐴) = ((♯‘𝑋) + 2)))
4140rexlimdvva 3202 . . 3 (𝑋𝑊 → (∃𝑎 ∈ (0...(♯‘𝑋))∃𝑏 ∈ (𝐼 × 2o)𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → (♯‘𝐴) = ((♯‘𝑋) + 2)))
4212, 41sylbid 240 . 2 (𝑋𝑊 → (𝐴 ∈ ran (𝑇𝑋) → (♯‘𝐴) = ((♯‘𝑋) + 2)))
4342imp 406 1 ((𝑋𝑊𝐴 ∈ ran (𝑇𝑋)) → (♯‘𝐴) = ((♯‘𝑋) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061  cdif 3928  cop 4612  cotp 4614  cmpt 5206   I cid 5552   × cxp 5657  ran crn 5660  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  1oc1o 8478  2oc2o 8479  cc 11132  0cc0 11134   + caddc 11137  cmin 11471  2c2 12300  cuz 12857  ...cfz 13529  chash 14353  Word cword 14536   splice csplice 14772  ⟨“cs2 14865   ~FG cefg 19692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-concat 14594  df-s1 14619  df-substr 14664  df-pfx 14694  df-splice 14773  df-s2 14872
This theorem is referenced by:  efgsfo  19725  efgredlemg  19728  efgredlemd  19730  efgredlem  19733  frgpnabllem1  19859
  Copyright terms: Public domain W3C validator