Step | Hyp | Ref
| Expression |
1 | | efgval.w |
. . . . . . . 8
β’ π = ( I βWord (πΌ Γ
2o)) |
2 | | efgval.r |
. . . . . . . 8
β’ βΌ = (
~FG βπΌ) |
3 | | efgval2.m |
. . . . . . . 8
β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) |
4 | | efgval2.t |
. . . . . . . 8
β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) |
5 | 1, 2, 3, 4 | efgtf 19584 |
. . . . . . 7
β’ (π β π β ((πβπ) = (π β (0...(β―βπ)), π β (πΌ Γ 2o) β¦ (π splice β¨π, π, β¨βπ(πβπ)ββ©β©)) β§ (πβπ):((0...(β―βπ)) Γ (πΌ Γ 2o))βΆπ)) |
6 | 5 | simpld 495 |
. . . . . 6
β’ (π β π β (πβπ) = (π β (0...(β―βπ)), π β (πΌ Γ 2o) β¦ (π splice β¨π, π, β¨βπ(πβπ)ββ©β©))) |
7 | 6 | rneqd 5935 |
. . . . 5
β’ (π β π β ran (πβπ) = ran (π β (0...(β―βπ)), π β (πΌ Γ 2o) β¦ (π splice β¨π, π, β¨βπ(πβπ)ββ©β©))) |
8 | 7 | eleq2d 2819 |
. . . 4
β’ (π β π β (π΄ β ran (πβπ) β π΄ β ran (π β (0...(β―βπ)), π β (πΌ Γ 2o) β¦ (π splice β¨π, π, β¨βπ(πβπ)ββ©β©)))) |
9 | | eqid 2732 |
. . . . 5
β’ (π β
(0...(β―βπ)),
π β (πΌ Γ 2o) β¦ (π splice β¨π, π, β¨βπ(πβπ)ββ©β©)) = (π β (0...(β―βπ)), π β (πΌ Γ 2o) β¦ (π splice β¨π, π, β¨βπ(πβπ)ββ©β©)) |
10 | | ovex 7438 |
. . . . 5
β’ (π splice β¨π, π, β¨βπ(πβπ)ββ©β©) β
V |
11 | 9, 10 | elrnmpo 7541 |
. . . 4
β’ (π΄ β ran (π β (0...(β―βπ)), π β (πΌ Γ 2o) β¦ (π splice β¨π, π, β¨βπ(πβπ)ββ©β©)) β βπ β
(0...(β―βπ))βπ β (πΌ Γ 2o)π΄ = (π splice β¨π, π, β¨βπ(πβπ)ββ©β©)) |
12 | 8, 11 | bitrdi 286 |
. . 3
β’ (π β π β (π΄ β ran (πβπ) β βπ β (0...(β―βπ))βπ β (πΌ Γ 2o)π΄ = (π splice β¨π, π, β¨βπ(πβπ)ββ©β©))) |
13 | | fviss 6965 |
. . . . . . . . 9
β’ ( I
βWord (πΌ Γ
2o)) β Word (πΌ Γ 2o) |
14 | 1, 13 | eqsstri 4015 |
. . . . . . . 8
β’ π β Word (πΌ Γ 2o) |
15 | | simpl 483 |
. . . . . . . 8
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β π β π) |
16 | 14, 15 | sselid 3979 |
. . . . . . 7
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β π β Word (πΌ Γ 2o)) |
17 | | elfzuz 13493 |
. . . . . . . . 9
β’ (π β
(0...(β―βπ))
β π β
(β€β₯β0)) |
18 | 17 | ad2antrl 726 |
. . . . . . . 8
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β π β
(β€β₯β0)) |
19 | | eluzfz2b 13506 |
. . . . . . . 8
β’ (π β
(β€β₯β0) β π β (0...π)) |
20 | 18, 19 | sylib 217 |
. . . . . . 7
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β π β (0...π)) |
21 | | simprl 769 |
. . . . . . 7
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β π β
(0...(β―βπ))) |
22 | | simprr 771 |
. . . . . . . 8
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β π β (πΌ Γ 2o)) |
23 | 3 | efgmf 19575 |
. . . . . . . . . 10
β’ π:(πΌ Γ 2o)βΆ(πΌ Γ
2o) |
24 | 23 | ffvelcdmi 7082 |
. . . . . . . . 9
β’ (π β (πΌ Γ 2o) β (πβπ) β (πΌ Γ 2o)) |
25 | 22, 24 | syl 17 |
. . . . . . . 8
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β (πβπ) β (πΌ Γ 2o)) |
26 | 22, 25 | s2cld 14818 |
. . . . . . 7
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β
β¨βπ(πβπ)ββ© β Word (πΌ Γ 2o)) |
27 | 16, 20, 21, 26 | spllen 14700 |
. . . . . 6
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β
(β―β(π splice
β¨π, π, β¨βπ(πβπ)ββ©β©)) =
((β―βπ) +
((β―ββ¨βπ(πβπ)ββ©) β (π β π)))) |
28 | | s2len 14836 |
. . . . . . . . . 10
β’
(β―ββ¨βπ(πβπ)ββ©) = 2 |
29 | 28 | a1i 11 |
. . . . . . . . 9
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β
(β―ββ¨βπ(πβπ)ββ©) = 2) |
30 | | eluzelcn 12830 |
. . . . . . . . . . 11
β’ (π β
(β€β₯β0) β π β β) |
31 | 18, 30 | syl 17 |
. . . . . . . . . 10
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β π β
β) |
32 | 31 | subidd 11555 |
. . . . . . . . 9
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β (π β π) = 0) |
33 | 29, 32 | oveq12d 7423 |
. . . . . . . 8
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β
((β―ββ¨βπ(πβπ)ββ©) β (π β π)) = (2 β 0)) |
34 | | 2cn 12283 |
. . . . . . . . 9
β’ 2 β
β |
35 | 34 | subid1i 11528 |
. . . . . . . 8
β’ (2
β 0) = 2 |
36 | 33, 35 | eqtrdi 2788 |
. . . . . . 7
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β
((β―ββ¨βπ(πβπ)ββ©) β (π β π)) = 2) |
37 | 36 | oveq2d 7421 |
. . . . . 6
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β
((β―βπ) +
((β―ββ¨βπ(πβπ)ββ©) β (π β π))) = ((β―βπ) + 2)) |
38 | 27, 37 | eqtrd 2772 |
. . . . 5
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β
(β―β(π splice
β¨π, π, β¨βπ(πβπ)ββ©β©)) =
((β―βπ) +
2)) |
39 | | fveqeq2 6897 |
. . . . 5
β’ (π΄ = (π splice β¨π, π, β¨βπ(πβπ)ββ©β©) β
((β―βπ΄) =
((β―βπ) + 2)
β (β―β(π
splice β¨π, π, β¨βπ(πβπ)ββ©β©)) =
((β―βπ) +
2))) |
40 | 38, 39 | syl5ibrcom 246 |
. . . 4
β’ ((π β π β§ (π β (0...(β―βπ)) β§ π β (πΌ Γ 2o))) β (π΄ = (π splice β¨π, π, β¨βπ(πβπ)ββ©β©) β
(β―βπ΄) =
((β―βπ) +
2))) |
41 | 40 | rexlimdvva 3211 |
. . 3
β’ (π β π β (βπ β (0...(β―βπ))βπ β (πΌ Γ 2o)π΄ = (π splice β¨π, π, β¨βπ(πβπ)ββ©β©) β
(β―βπ΄) =
((β―βπ) +
2))) |
42 | 12, 41 | sylbid 239 |
. 2
β’ (π β π β (π΄ β ran (πβπ) β (β―βπ΄) = ((β―βπ) + 2))) |
43 | 42 | imp 407 |
1
β’ ((π β π β§ π΄ β ran (πβπ)) β (β―βπ΄) = ((β―βπ) + 2)) |