Step | Hyp | Ref
| Expression |
1 | | efgval.w |
. . . . . . . 8
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
2 | | efgval.r |
. . . . . . . 8
⊢ ∼ = (
~FG ‘𝐼) |
3 | | efgval2.m |
. . . . . . . 8
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
4 | | efgval2.t |
. . . . . . . 8
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
5 | 1, 2, 3, 4 | efgtf 19328 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑊 → ((𝑇‘𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∧ (𝑇‘𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊)) |
6 | 5 | simpld 495 |
. . . . . 6
⊢ (𝑋 ∈ 𝑊 → (𝑇‘𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
7 | 6 | rneqd 5847 |
. . . . 5
⊢ (𝑋 ∈ 𝑊 → ran (𝑇‘𝑋) = ran (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
8 | 7 | eleq2d 2824 |
. . . 4
⊢ (𝑋 ∈ 𝑊 → (𝐴 ∈ ran (𝑇‘𝑋) ↔ 𝐴 ∈ ran (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)))) |
9 | | eqid 2738 |
. . . . 5
⊢ (𝑎 ∈
(0...(♯‘𝑋)),
𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
10 | | ovex 7308 |
. . . . 5
⊢ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) ∈
V |
11 | 9, 10 | elrnmpo 7410 |
. . . 4
⊢ (𝐴 ∈ ran (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ↔ ∃𝑎 ∈
(0...(♯‘𝑋))∃𝑏 ∈ (𝐼 × 2o)𝐴 = (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
12 | 8, 11 | bitrdi 287 |
. . 3
⊢ (𝑋 ∈ 𝑊 → (𝐴 ∈ ran (𝑇‘𝑋) ↔ ∃𝑎 ∈ (0...(♯‘𝑋))∃𝑏 ∈ (𝐼 × 2o)𝐴 = (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
13 | | fviss 6845 |
. . . . . . . . 9
⊢ ( I
‘Word (𝐼 ×
2o)) ⊆ Word (𝐼 × 2o) |
14 | 1, 13 | eqsstri 3955 |
. . . . . . . 8
⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
15 | | simpl 483 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑋 ∈ 𝑊) |
16 | 14, 15 | sselid 3919 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑋 ∈ Word (𝐼 × 2o)) |
17 | | elfzuz 13252 |
. . . . . . . . 9
⊢ (𝑎 ∈
(0...(♯‘𝑋))
→ 𝑎 ∈
(ℤ≥‘0)) |
18 | 17 | ad2antrl 725 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈
(ℤ≥‘0)) |
19 | | eluzfz2b 13265 |
. . . . . . . 8
⊢ (𝑎 ∈
(ℤ≥‘0) ↔ 𝑎 ∈ (0...𝑎)) |
20 | 18, 19 | sylib 217 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ (0...𝑎)) |
21 | | simprl 768 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈
(0...(♯‘𝑋))) |
22 | | simprr 770 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑏 ∈ (𝐼 × 2o)) |
23 | 3 | efgmf 19319 |
. . . . . . . . . 10
⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 ×
2o) |
24 | 23 | ffvelrni 6960 |
. . . . . . . . 9
⊢ (𝑏 ∈ (𝐼 × 2o) → (𝑀‘𝑏) ∈ (𝐼 × 2o)) |
25 | 22, 24 | syl 17 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀‘𝑏) ∈ (𝐼 × 2o)) |
26 | 22, 25 | s2cld 14584 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) →
〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o)) |
27 | 16, 20, 21, 26 | spllen 14467 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(♯‘(𝑋 splice
〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) =
((♯‘𝑋) +
((♯‘〈“𝑏(𝑀‘𝑏)”〉) − (𝑎 − 𝑎)))) |
28 | | s2len 14602 |
. . . . . . . . . 10
⊢
(♯‘〈“𝑏(𝑀‘𝑏)”〉) = 2 |
29 | 28 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(♯‘〈“𝑏(𝑀‘𝑏)”〉) = 2) |
30 | | eluzelcn 12594 |
. . . . . . . . . . 11
⊢ (𝑎 ∈
(ℤ≥‘0) → 𝑎 ∈ ℂ) |
31 | 18, 30 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈
ℂ) |
32 | 31 | subidd 11320 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 − 𝑎) = 0) |
33 | 29, 32 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) →
((♯‘〈“𝑏(𝑀‘𝑏)”〉) − (𝑎 − 𝑎)) = (2 − 0)) |
34 | | 2cn 12048 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
35 | 34 | subid1i 11293 |
. . . . . . . 8
⊢ (2
− 0) = 2 |
36 | 33, 35 | eqtrdi 2794 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) →
((♯‘〈“𝑏(𝑀‘𝑏)”〉) − (𝑎 − 𝑎)) = 2) |
37 | 36 | oveq2d 7291 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) →
((♯‘𝑋) +
((♯‘〈“𝑏(𝑀‘𝑏)”〉) − (𝑎 − 𝑎))) = ((♯‘𝑋) + 2)) |
38 | 27, 37 | eqtrd 2778 |
. . . . 5
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) →
(♯‘(𝑋 splice
〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) =
((♯‘𝑋) +
2)) |
39 | | fveqeq2 6783 |
. . . . 5
⊢ (𝐴 = (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) →
((♯‘𝐴) =
((♯‘𝑋) + 2)
↔ (♯‘(𝑋
splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) =
((♯‘𝑋) +
2))) |
40 | 38, 39 | syl5ibrcom 246 |
. . . 4
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝐴 = (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) →
(♯‘𝐴) =
((♯‘𝑋) +
2))) |
41 | 40 | rexlimdvva 3223 |
. . 3
⊢ (𝑋 ∈ 𝑊 → (∃𝑎 ∈ (0...(♯‘𝑋))∃𝑏 ∈ (𝐼 × 2o)𝐴 = (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) →
(♯‘𝐴) =
((♯‘𝑋) +
2))) |
42 | 12, 41 | sylbid 239 |
. 2
⊢ (𝑋 ∈ 𝑊 → (𝐴 ∈ ran (𝑇‘𝑋) → (♯‘𝐴) = ((♯‘𝑋) + 2))) |
43 | 42 | imp 407 |
1
⊢ ((𝑋 ∈ 𝑊 ∧ 𝐴 ∈ ran (𝑇‘𝑋)) → (♯‘𝐴) = ((♯‘𝑋) + 2)) |