MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgtlen Structured version   Visualization version   GIF version

Theorem efgtlen 19642
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
efgval.r ∼ = ( ~FG β€˜πΌ)
efgval2.m 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
efgval2.t 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
Assertion
Ref Expression
efgtlen ((𝑋 ∈ π‘Š ∧ 𝐴 ∈ ran (π‘‡β€˜π‘‹)) β†’ (β™―β€˜π΄) = ((β™―β€˜π‘‹) + 2))
Distinct variable groups:   𝑦,𝑧   𝑣,𝑛,𝑀,𝑦,𝑧   𝑛,𝑀,𝑣,𝑀   𝑛,π‘Š,𝑣,𝑀,𝑦,𝑧   𝑦, ∼ ,𝑧   𝑛,𝐼,𝑣,𝑀,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑀,𝑣,𝑛)   ∼ (𝑀,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑀,𝑣,𝑛)   𝑀(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑀,𝑣,𝑛)

Proof of Theorem efgtlen
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8 π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
2 efgval.r . . . . . . . 8 ∼ = ( ~FG β€˜πΌ)
3 efgval2.m . . . . . . . 8 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
4 efgval2.t . . . . . . . 8 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
51, 2, 3, 4efgtf 19638 . . . . . . 7 (𝑋 ∈ π‘Š β†’ ((π‘‡β€˜π‘‹) = (π‘Ž ∈ (0...(β™―β€˜π‘‹)), 𝑏 ∈ (𝐼 Γ— 2o) ↦ (𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©)) ∧ (π‘‡β€˜π‘‹):((0...(β™―β€˜π‘‹)) Γ— (𝐼 Γ— 2o))βŸΆπ‘Š))
65simpld 494 . . . . . 6 (𝑋 ∈ π‘Š β†’ (π‘‡β€˜π‘‹) = (π‘Ž ∈ (0...(β™―β€˜π‘‹)), 𝑏 ∈ (𝐼 Γ— 2o) ↦ (𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©)))
76rneqd 5937 . . . . 5 (𝑋 ∈ π‘Š β†’ ran (π‘‡β€˜π‘‹) = ran (π‘Ž ∈ (0...(β™―β€˜π‘‹)), 𝑏 ∈ (𝐼 Γ— 2o) ↦ (𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©)))
87eleq2d 2818 . . . 4 (𝑋 ∈ π‘Š β†’ (𝐴 ∈ ran (π‘‡β€˜π‘‹) ↔ 𝐴 ∈ ran (π‘Ž ∈ (0...(β™―β€˜π‘‹)), 𝑏 ∈ (𝐼 Γ— 2o) ↦ (𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©))))
9 eqid 2731 . . . . 5 (π‘Ž ∈ (0...(β™―β€˜π‘‹)), 𝑏 ∈ (𝐼 Γ— 2o) ↦ (𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©)) = (π‘Ž ∈ (0...(β™―β€˜π‘‹)), 𝑏 ∈ (𝐼 Γ— 2o) ↦ (𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©))
10 ovex 7445 . . . . 5 (𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©) ∈ V
119, 10elrnmpo 7548 . . . 4 (𝐴 ∈ ran (π‘Ž ∈ (0...(β™―β€˜π‘‹)), 𝑏 ∈ (𝐼 Γ— 2o) ↦ (𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©)) ↔ βˆƒπ‘Ž ∈ (0...(β™―β€˜π‘‹))βˆƒπ‘ ∈ (𝐼 Γ— 2o)𝐴 = (𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©))
128, 11bitrdi 287 . . 3 (𝑋 ∈ π‘Š β†’ (𝐴 ∈ ran (π‘‡β€˜π‘‹) ↔ βˆƒπ‘Ž ∈ (0...(β™―β€˜π‘‹))βˆƒπ‘ ∈ (𝐼 Γ— 2o)𝐴 = (𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©)))
13 fviss 6968 . . . . . . . . 9 ( I β€˜Word (𝐼 Γ— 2o)) βŠ† Word (𝐼 Γ— 2o)
141, 13eqsstri 4016 . . . . . . . 8 π‘Š βŠ† Word (𝐼 Γ— 2o)
15 simpl 482 . . . . . . . 8 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ 𝑋 ∈ π‘Š)
1614, 15sselid 3980 . . . . . . 7 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ 𝑋 ∈ Word (𝐼 Γ— 2o))
17 elfzuz 13504 . . . . . . . . 9 (π‘Ž ∈ (0...(β™―β€˜π‘‹)) β†’ π‘Ž ∈ (β„€β‰₯β€˜0))
1817ad2antrl 725 . . . . . . . 8 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ π‘Ž ∈ (β„€β‰₯β€˜0))
19 eluzfz2b 13517 . . . . . . . 8 (π‘Ž ∈ (β„€β‰₯β€˜0) ↔ π‘Ž ∈ (0...π‘Ž))
2018, 19sylib 217 . . . . . . 7 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ π‘Ž ∈ (0...π‘Ž))
21 simprl 768 . . . . . . 7 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ π‘Ž ∈ (0...(β™―β€˜π‘‹)))
22 simprr 770 . . . . . . . 8 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ 𝑏 ∈ (𝐼 Γ— 2o))
233efgmf 19629 . . . . . . . . . 10 𝑀:(𝐼 Γ— 2o)⟢(𝐼 Γ— 2o)
2423ffvelcdmi 7085 . . . . . . . . 9 (𝑏 ∈ (𝐼 Γ— 2o) β†’ (π‘€β€˜π‘) ∈ (𝐼 Γ— 2o))
2522, 24syl 17 . . . . . . . 8 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ (π‘€β€˜π‘) ∈ (𝐼 Γ— 2o))
2622, 25s2cld 14829 . . . . . . 7 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ© ∈ Word (𝐼 Γ— 2o))
2716, 20, 21, 26spllen 14711 . . . . . 6 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ (β™―β€˜(𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©)) = ((β™―β€˜π‘‹) + ((β™―β€˜βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©) βˆ’ (π‘Ž βˆ’ π‘Ž))))
28 s2len 14847 . . . . . . . . . 10 (β™―β€˜βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©) = 2
2928a1i 11 . . . . . . . . 9 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ (β™―β€˜βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©) = 2)
30 eluzelcn 12841 . . . . . . . . . . 11 (π‘Ž ∈ (β„€β‰₯β€˜0) β†’ π‘Ž ∈ β„‚)
3118, 30syl 17 . . . . . . . . . 10 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ π‘Ž ∈ β„‚)
3231subidd 11566 . . . . . . . . 9 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ (π‘Ž βˆ’ π‘Ž) = 0)
3329, 32oveq12d 7430 . . . . . . . 8 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ ((β™―β€˜βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©) βˆ’ (π‘Ž βˆ’ π‘Ž)) = (2 βˆ’ 0))
34 2cn 12294 . . . . . . . . 9 2 ∈ β„‚
3534subid1i 11539 . . . . . . . 8 (2 βˆ’ 0) = 2
3633, 35eqtrdi 2787 . . . . . . 7 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ ((β™―β€˜βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©) βˆ’ (π‘Ž βˆ’ π‘Ž)) = 2)
3736oveq2d 7428 . . . . . 6 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ ((β™―β€˜π‘‹) + ((β™―β€˜βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©) βˆ’ (π‘Ž βˆ’ π‘Ž))) = ((β™―β€˜π‘‹) + 2))
3827, 37eqtrd 2771 . . . . 5 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ (β™―β€˜(𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©)) = ((β™―β€˜π‘‹) + 2))
39 fveqeq2 6900 . . . . 5 (𝐴 = (𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©) β†’ ((β™―β€˜π΄) = ((β™―β€˜π‘‹) + 2) ↔ (β™―β€˜(𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©)) = ((β™―β€˜π‘‹) + 2)))
4038, 39syl5ibrcom 246 . . . 4 ((𝑋 ∈ π‘Š ∧ (π‘Ž ∈ (0...(β™―β€˜π‘‹)) ∧ 𝑏 ∈ (𝐼 Γ— 2o))) β†’ (𝐴 = (𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©) β†’ (β™―β€˜π΄) = ((β™―β€˜π‘‹) + 2)))
4140rexlimdvva 3210 . . 3 (𝑋 ∈ π‘Š β†’ (βˆƒπ‘Ž ∈ (0...(β™―β€˜π‘‹))βˆƒπ‘ ∈ (𝐼 Γ— 2o)𝐴 = (𝑋 splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘(π‘€β€˜π‘)β€βŸ©βŸ©) β†’ (β™―β€˜π΄) = ((β™―β€˜π‘‹) + 2)))
4212, 41sylbid 239 . 2 (𝑋 ∈ π‘Š β†’ (𝐴 ∈ ran (π‘‡β€˜π‘‹) β†’ (β™―β€˜π΄) = ((β™―β€˜π‘‹) + 2)))
4342imp 406 1 ((𝑋 ∈ π‘Š ∧ 𝐴 ∈ ran (π‘‡β€˜π‘‹)) β†’ (β™―β€˜π΄) = ((β™―β€˜π‘‹) + 2))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆƒwrex 3069   βˆ– cdif 3945  βŸ¨cop 4634  βŸ¨cotp 4636   ↦ cmpt 5231   I cid 5573   Γ— cxp 5674  ran crn 5677  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414  1oc1o 8465  2oc2o 8466  β„‚cc 11114  0cc0 11116   + caddc 11119   βˆ’ cmin 11451  2c2 12274  β„€β‰₯cuz 12829  ...cfz 13491  β™―chash 14297  Word cword 14471   splice csplice 14706  βŸ¨β€œcs2 14799   ~FG cefg 19622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492  df-fzo 13635  df-hash 14298  df-word 14472  df-concat 14528  df-s1 14553  df-substr 14598  df-pfx 14628  df-splice 14707  df-s2 14806
This theorem is referenced by:  efgsfo  19655  efgredlemg  19658  efgredlemd  19660  efgredlem  19663  frgpnabllem1  19789
  Copyright terms: Public domain W3C validator