![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnovrn | Structured version Visualization version GIF version |
Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.) |
Ref | Expression |
---|---|
fnovrn | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5712 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) | |
2 | df-ov 7408 | . . . 4 ⊢ (𝐶𝐹𝐷) = (𝐹‘⟨𝐶, 𝐷⟩) | |
3 | fnfvelrn 7079 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → (𝐹‘⟨𝐶, 𝐷⟩) ∈ ran 𝐹) | |
4 | 2, 3 | eqeltrid 2837 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
5 | 1, 4 | sylan2 593 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
6 | 5 | 3impb 1115 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ⟨cop 4633 × cxp 5673 ran crn 5676 Fn wfn 6535 ‘cfv 6540 (class class class)co 7405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-fv 6548 df-ov 7408 |
This theorem is referenced by: unirnioo 13422 ioorebas 13424 yonffthlem 18231 gsumval2a 18600 efginvrel2 19589 efgredleme 19605 efgcpbllemb 19617 mplsubrglem 21554 lecldbas 22714 blelrnps 23913 blelrn 23914 blssioo 24302 tgioo 24303 opnmbllem 25109 mbfdm 25134 mbfima 25138 tpr2rico 32880 dya2icoseg 33264 opnmbllem0 36512 elrnmpoid 43912 smflimlem3 45475 |
Copyright terms: Public domain | W3C validator |