![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnovrn | Structured version Visualization version GIF version |
Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.) |
Ref | Expression |
---|---|
fnovrn | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5713 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) | |
2 | df-ov 7414 | . . . 4 ⊢ (𝐶𝐹𝐷) = (𝐹‘⟨𝐶, 𝐷⟩) | |
3 | fnfvelrn 7082 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → (𝐹‘⟨𝐶, 𝐷⟩) ∈ ran 𝐹) | |
4 | 2, 3 | eqeltrid 2837 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
5 | 1, 4 | sylan2 593 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
6 | 5 | 3impb 1115 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ⟨cop 4634 × cxp 5674 ran crn 5677 Fn wfn 6538 ‘cfv 6543 (class class class)co 7411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-ov 7414 |
This theorem is referenced by: unirnioo 13430 ioorebas 13432 yonffthlem 18239 gsumval2a 18610 efginvrel2 19636 efgredleme 19652 efgcpbllemb 19664 mplsubrglem 21782 lecldbas 22943 blelrnps 24142 blelrn 24143 blssioo 24531 tgioo 24532 opnmbllem 25342 mbfdm 25367 mbfima 25371 tpr2rico 33178 dya2icoseg 33562 opnmbllem0 36827 elrnmpoid 44226 smflimlem3 45788 |
Copyright terms: Public domain | W3C validator |