MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnovrn Structured version   Visualization version   GIF version

Theorem fnovrn 7524
Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.)
Assertion
Ref Expression
fnovrn ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹)

Proof of Theorem fnovrn
StepHypRef Expression
1 opelxpi 5656 . . 3 ((𝐶𝐴𝐷𝐵) → ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵))
2 df-ov 7352 . . . 4 (𝐶𝐹𝐷) = (𝐹‘⟨𝐶, 𝐷⟩)
3 fnfvelrn 7014 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → (𝐹‘⟨𝐶, 𝐷⟩) ∈ ran 𝐹)
42, 3eqeltrid 2832 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹)
51, 4sylan2 593 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶𝐴𝐷𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹)
653impb 1114 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  cop 4583   × cxp 5617  ran crn 5620   Fn wfn 6477  cfv 6482  (class class class)co 7349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490  df-ov 7352
This theorem is referenced by:  unirnioo  13352  ioorebas  13354  yonffthlem  18188  gsumval2a  18559  efginvrel2  19606  efgredleme  19622  efgcpbllemb  19634  mplsubrglem  21911  lecldbas  23104  blelrnps  24302  blelrn  24303  blssioo  24681  tgioo  24682  opnmbllem  25500  mbfdm  25525  mbfima  25529  tpr2rico  33879  dya2icoseg  34245  opnmbllem0  37636  elrnmpoid  45206  smflimlem3  46754
  Copyright terms: Public domain W3C validator