| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnovrn | Structured version Visualization version GIF version | ||
| Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.) |
| Ref | Expression |
|---|---|
| fnovrn | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5675 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) | |
| 2 | df-ov 7390 | . . . 4 ⊢ (𝐶𝐹𝐷) = (𝐹‘〈𝐶, 𝐷〉) | |
| 3 | fnfvelrn 7052 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) → (𝐹‘〈𝐶, 𝐷〉) ∈ ran 𝐹) | |
| 4 | 2, 3 | eqeltrid 2832 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
| 5 | 1, 4 | sylan2 593 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
| 6 | 5 | 3impb 1114 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 〈cop 4595 × cxp 5636 ran crn 5639 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: unirnioo 13410 ioorebas 13412 yonffthlem 18243 gsumval2a 18612 efginvrel2 19657 efgredleme 19673 efgcpbllemb 19685 mplsubrglem 21913 lecldbas 23106 blelrnps 24304 blelrn 24305 blssioo 24683 tgioo 24684 opnmbllem 25502 mbfdm 25527 mbfima 25531 tpr2rico 33902 dya2icoseg 34268 opnmbllem0 37650 elrnmpoid 45222 smflimlem3 46771 |
| Copyright terms: Public domain | W3C validator |