Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnovrn | Structured version Visualization version GIF version |
Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.) |
Ref | Expression |
---|---|
fnovrn | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5627 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) | |
2 | df-ov 7287 | . . . 4 ⊢ (𝐶𝐹𝐷) = (𝐹‘〈𝐶, 𝐷〉) | |
3 | fnfvelrn 6967 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) → (𝐹‘〈𝐶, 𝐷〉) ∈ ran 𝐹) | |
4 | 2, 3 | eqeltrid 2844 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
5 | 1, 4 | sylan2 593 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
6 | 5 | 3impb 1114 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2107 〈cop 4568 × cxp 5588 ran crn 5591 Fn wfn 6432 ‘cfv 6437 (class class class)co 7284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-iota 6395 df-fun 6439 df-fn 6440 df-fv 6445 df-ov 7287 |
This theorem is referenced by: unirnioo 13190 ioorebas 13192 yonffthlem 18009 gsumval2a 18378 efginvrel2 19342 efgredleme 19358 efgcpbllemb 19370 mplsubrglem 21219 lecldbas 22379 blelrnps 23578 blelrn 23579 blssioo 23967 tgioo 23968 opnmbllem 24774 mbfdm 24799 mbfima 24803 tpr2rico 31871 dya2icoseg 32253 opnmbllem0 35822 elrnmpoid 42774 smflimlem3 44318 |
Copyright terms: Public domain | W3C validator |