MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnovrn Structured version   Visualization version   GIF version

Theorem fnovrn 7441
Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.)
Assertion
Ref Expression
fnovrn ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹)

Proof of Theorem fnovrn
StepHypRef Expression
1 opelxpi 5627 . . 3 ((𝐶𝐴𝐷𝐵) → ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵))
2 df-ov 7274 . . . 4 (𝐶𝐹𝐷) = (𝐹‘⟨𝐶, 𝐷⟩)
3 fnfvelrn 6955 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → (𝐹‘⟨𝐶, 𝐷⟩) ∈ ran 𝐹)
42, 3eqeltrid 2845 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹)
51, 4sylan2 593 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶𝐴𝐷𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹)
653impb 1114 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2110  cop 4573   × cxp 5588  ran crn 5591   Fn wfn 6427  cfv 6432  (class class class)co 7271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-iota 6390  df-fun 6434  df-fn 6435  df-fv 6440  df-ov 7274
This theorem is referenced by:  unirnioo  13180  ioorebas  13182  yonffthlem  17998  gsumval2a  18367  efginvrel2  19331  efgredleme  19347  efgcpbllemb  19359  mplsubrglem  21208  lecldbas  22368  blelrnps  23567  blelrn  23568  blssioo  23956  tgioo  23957  opnmbllem  24763  mbfdm  24788  mbfima  24792  tpr2rico  31858  dya2icoseg  32240  opnmbllem0  35809  elrnmpoid  42737  smflimlem3  44276
  Copyright terms: Public domain W3C validator