| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnovrn | Structured version Visualization version GIF version | ||
| Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.) |
| Ref | Expression |
|---|---|
| fnovrn | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5678 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) | |
| 2 | df-ov 7393 | . . . 4 ⊢ (𝐶𝐹𝐷) = (𝐹‘〈𝐶, 𝐷〉) | |
| 3 | fnfvelrn 7055 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) → (𝐹‘〈𝐶, 𝐷〉) ∈ ran 𝐹) | |
| 4 | 2, 3 | eqeltrid 2833 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
| 5 | 1, 4 | sylan2 593 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
| 6 | 5 | 3impb 1114 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 〈cop 4598 × cxp 5639 ran crn 5642 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: unirnioo 13417 ioorebas 13419 yonffthlem 18250 gsumval2a 18619 efginvrel2 19664 efgredleme 19680 efgcpbllemb 19692 mplsubrglem 21920 lecldbas 23113 blelrnps 24311 blelrn 24312 blssioo 24690 tgioo 24691 opnmbllem 25509 mbfdm 25534 mbfima 25538 tpr2rico 33909 dya2icoseg 34275 opnmbllem0 37657 elrnmpoid 45229 smflimlem3 46778 |
| Copyright terms: Public domain | W3C validator |