MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnovrn Structured version   Visualization version   GIF version

Theorem fnovrn 7137
Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.)
Assertion
Ref Expression
fnovrn ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹)

Proof of Theorem fnovrn
StepHypRef Expression
1 opelxpi 5441 . . 3 ((𝐶𝐴𝐷𝐵) → ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵))
2 df-ov 6977 . . . 4 (𝐶𝐹𝐷) = (𝐹‘⟨𝐶, 𝐷⟩)
3 fnfvelrn 6671 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → (𝐹‘⟨𝐶, 𝐷⟩) ∈ ran 𝐹)
42, 3syl5eqel 2867 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹)
51, 4sylan2 583 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶𝐴𝐷𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹)
653impb 1095 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068  wcel 2048  cop 4445   × cxp 5402  ran crn 5405   Fn wfn 6181  cfv 6186  (class class class)co 6974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2747  ax-sep 5058  ax-nul 5065  ax-pr 5184
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2756  df-cleq 2768  df-clel 2843  df-nfc 2915  df-ral 3090  df-rex 3091  df-rab 3094  df-v 3414  df-sbc 3681  df-dif 3831  df-un 3833  df-in 3835  df-ss 3842  df-nul 4178  df-if 4349  df-sn 4440  df-pr 4442  df-op 4446  df-uni 4711  df-br 4928  df-opab 4990  df-id 5309  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-iota 6150  df-fun 6188  df-fn 6189  df-fv 6194  df-ov 6977
This theorem is referenced by:  unirnioo  12650  ioorebas  12652  yonffthlem  17384  gsumval2a  17741  efginvrel2  18605  efgredleme  18622  efgcpbllemb  18635  mplsubrglem  19927  lecldbas  21525  blelrnps  22723  blelrn  22724  blssioo  23100  tgioo  23101  opnmbllem  23899  mbfdm  23924  mbfima  23928  tpr2rico  30790  dya2icoseg  31171  opnmbllem0  34347  elrnmpt2id  40899  smflimlem3  42459
  Copyright terms: Public domain W3C validator