MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgdom Structured version   Visualization version   GIF version

Theorem tgdom 23006
Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
tgdom (𝐵𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵)

Proof of Theorem tgdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5396 . 2 (𝐵𝑉 → 𝒫 𝐵 ∈ V)
2 inss1 4258 . . . . 5 (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵
3 vpwex 5395 . . . . . . 7 𝒫 𝑥 ∈ V
43inex2 5336 . . . . . 6 (𝐵 ∩ 𝒫 𝑥) ∈ V
54elpw 4626 . . . . 5 ((𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵 ↔ (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵)
62, 5mpbir 231 . . . 4 (𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵
76a1i 11 . . 3 (𝑥 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵)
8 unieq 4942 . . . . . . 7 ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦))
98adantl 481 . . . . . 6 (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦))
10 eltg4i 22988 . . . . . . 7 (𝑥 ∈ (topGen‘𝐵) → 𝑥 = (𝐵 ∩ 𝒫 𝑥))
1110ad2antrr 725 . . . . . 6 (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑥 = (𝐵 ∩ 𝒫 𝑥))
12 eltg4i 22988 . . . . . . 7 (𝑦 ∈ (topGen‘𝐵) → 𝑦 = (𝐵 ∩ 𝒫 𝑦))
1312ad2antlr 726 . . . . . 6 (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑦 = (𝐵 ∩ 𝒫 𝑦))
149, 11, 133eqtr4d 2790 . . . . 5 (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑥 = 𝑦)
1514ex 412 . . . 4 ((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) → 𝑥 = 𝑦))
16 pweq 4636 . . . . 5 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦)
1716ineq2d 4241 . . . 4 (𝑥 = 𝑦 → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦))
1815, 17impbid1 225 . . 3 ((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) ↔ 𝑥 = 𝑦))
197, 18dom2 9055 . 2 (𝒫 𝐵 ∈ V → (topGen‘𝐵) ≼ 𝒫 𝐵)
201, 19syl 17 1 (𝐵𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931   class class class wbr 5166  cfv 6573  cdom 9001  topGenctg 17497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-dom 9005  df-topgen 17503
This theorem is referenced by:  2ndcredom  23479  kelac2lem  43021
  Copyright terms: Public domain W3C validator