| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgdom | Structured version Visualization version GIF version | ||
| Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| tgdom | ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 5378 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ V) | |
| 2 | inss1 4237 | . . . . 5 ⊢ (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵 | |
| 3 | vpwex 5377 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ V | |
| 4 | 3 | inex2 5318 | . . . . . 6 ⊢ (𝐵 ∩ 𝒫 𝑥) ∈ V |
| 5 | 4 | elpw 4604 | . . . . 5 ⊢ ((𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵 ↔ (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵) |
| 6 | 2, 5 | mpbir 231 | . . . 4 ⊢ (𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵 |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝑥 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵) |
| 8 | unieq 4918 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) → ∪ (𝐵 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑦)) | |
| 9 | 8 | adantl 481 | . . . . . 6 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → ∪ (𝐵 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑦)) |
| 10 | eltg4i 22967 | . . . . . . 7 ⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 = ∪ (𝐵 ∩ 𝒫 𝑥)) | |
| 11 | 10 | ad2antrr 726 | . . . . . 6 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑥 = ∪ (𝐵 ∩ 𝒫 𝑥)) |
| 12 | eltg4i 22967 | . . . . . . 7 ⊢ (𝑦 ∈ (topGen‘𝐵) → 𝑦 = ∪ (𝐵 ∩ 𝒫 𝑦)) | |
| 13 | 12 | ad2antlr 727 | . . . . . 6 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑦 = ∪ (𝐵 ∩ 𝒫 𝑦)) |
| 14 | 9, 11, 13 | 3eqtr4d 2787 | . . . . 5 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑥 = 𝑦) |
| 15 | 14 | ex 412 | . . . 4 ⊢ ((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) → 𝑥 = 𝑦)) |
| 16 | pweq 4614 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) | |
| 17 | 16 | ineq2d 4220 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) |
| 18 | 15, 17 | impbid1 225 | . . 3 ⊢ ((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) ↔ 𝑥 = 𝑦)) |
| 19 | 7, 18 | dom2 9035 | . 2 ⊢ (𝒫 𝐵 ∈ V → (topGen‘𝐵) ≼ 𝒫 𝐵) |
| 20 | 1, 19 | syl 17 | 1 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∩ cin 3950 ⊆ wss 3951 𝒫 cpw 4600 ∪ cuni 4907 class class class wbr 5143 ‘cfv 6561 ≼ cdom 8983 topGenctg 17482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-dom 8987 df-topgen 17488 |
| This theorem is referenced by: 2ndcredom 23458 kelac2lem 43076 |
| Copyright terms: Public domain | W3C validator |