![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgdom | Structured version Visualization version GIF version |
Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
tgdom | ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5384 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ V) | |
2 | inss1 4245 | . . . . 5 ⊢ (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵 | |
3 | vpwex 5383 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ V | |
4 | 3 | inex2 5324 | . . . . . 6 ⊢ (𝐵 ∩ 𝒫 𝑥) ∈ V |
5 | 4 | elpw 4609 | . . . . 5 ⊢ ((𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵 ↔ (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵) |
6 | 2, 5 | mpbir 231 | . . . 4 ⊢ (𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵 |
7 | 6 | a1i 11 | . . 3 ⊢ (𝑥 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵) |
8 | unieq 4923 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) → ∪ (𝐵 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑦)) | |
9 | 8 | adantl 481 | . . . . . 6 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → ∪ (𝐵 ∩ 𝒫 𝑥) = ∪ (𝐵 ∩ 𝒫 𝑦)) |
10 | eltg4i 22983 | . . . . . . 7 ⊢ (𝑥 ∈ (topGen‘𝐵) → 𝑥 = ∪ (𝐵 ∩ 𝒫 𝑥)) | |
11 | 10 | ad2antrr 726 | . . . . . 6 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑥 = ∪ (𝐵 ∩ 𝒫 𝑥)) |
12 | eltg4i 22983 | . . . . . . 7 ⊢ (𝑦 ∈ (topGen‘𝐵) → 𝑦 = ∪ (𝐵 ∩ 𝒫 𝑦)) | |
13 | 12 | ad2antlr 727 | . . . . . 6 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑦 = ∪ (𝐵 ∩ 𝒫 𝑦)) |
14 | 9, 11, 13 | 3eqtr4d 2785 | . . . . 5 ⊢ (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑥 = 𝑦) |
15 | 14 | ex 412 | . . . 4 ⊢ ((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) → 𝑥 = 𝑦)) |
16 | pweq 4619 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) | |
17 | 16 | ineq2d 4228 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) |
18 | 15, 17 | impbid1 225 | . . 3 ⊢ ((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) ↔ 𝑥 = 𝑦)) |
19 | 7, 18 | dom2 9034 | . 2 ⊢ (𝒫 𝐵 ∈ V → (topGen‘𝐵) ≼ 𝒫 𝐵) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 class class class wbr 5148 ‘cfv 6563 ≼ cdom 8982 topGenctg 17484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-dom 8986 df-topgen 17490 |
This theorem is referenced by: 2ndcredom 23474 kelac2lem 43053 |
Copyright terms: Public domain | W3C validator |