MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgdom Structured version   Visualization version   GIF version

Theorem tgdom 22894
Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
tgdom (𝐡 ∈ 𝑉 β†’ (topGenβ€˜π΅) β‰Ό 𝒫 𝐡)

Proof of Theorem tgdom
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5378 . 2 (𝐡 ∈ 𝑉 β†’ 𝒫 𝐡 ∈ V)
2 inss1 4229 . . . . 5 (𝐡 ∩ 𝒫 π‘₯) βŠ† 𝐡
3 vpwex 5377 . . . . . . 7 𝒫 π‘₯ ∈ V
43inex2 5318 . . . . . 6 (𝐡 ∩ 𝒫 π‘₯) ∈ V
54elpw 4607 . . . . 5 ((𝐡 ∩ 𝒫 π‘₯) ∈ 𝒫 𝐡 ↔ (𝐡 ∩ 𝒫 π‘₯) βŠ† 𝐡)
62, 5mpbir 230 . . . 4 (𝐡 ∩ 𝒫 π‘₯) ∈ 𝒫 𝐡
76a1i 11 . . 3 (π‘₯ ∈ (topGenβ€˜π΅) β†’ (𝐡 ∩ 𝒫 π‘₯) ∈ 𝒫 𝐡)
8 unieq 4919 . . . . . . 7 ((𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦) β†’ βˆͺ (𝐡 ∩ 𝒫 π‘₯) = βˆͺ (𝐡 ∩ 𝒫 𝑦))
98adantl 481 . . . . . 6 (((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) ∧ (𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦)) β†’ βˆͺ (𝐡 ∩ 𝒫 π‘₯) = βˆͺ (𝐡 ∩ 𝒫 𝑦))
10 eltg4i 22876 . . . . . . 7 (π‘₯ ∈ (topGenβ€˜π΅) β†’ π‘₯ = βˆͺ (𝐡 ∩ 𝒫 π‘₯))
1110ad2antrr 725 . . . . . 6 (((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) ∧ (𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦)) β†’ π‘₯ = βˆͺ (𝐡 ∩ 𝒫 π‘₯))
12 eltg4i 22876 . . . . . . 7 (𝑦 ∈ (topGenβ€˜π΅) β†’ 𝑦 = βˆͺ (𝐡 ∩ 𝒫 𝑦))
1312ad2antlr 726 . . . . . 6 (((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) ∧ (𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦)) β†’ 𝑦 = βˆͺ (𝐡 ∩ 𝒫 𝑦))
149, 11, 133eqtr4d 2778 . . . . 5 (((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) ∧ (𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦)) β†’ π‘₯ = 𝑦)
1514ex 412 . . . 4 ((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) β†’ ((𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦) β†’ π‘₯ = 𝑦))
16 pweq 4617 . . . . 5 (π‘₯ = 𝑦 β†’ 𝒫 π‘₯ = 𝒫 𝑦)
1716ineq2d 4212 . . . 4 (π‘₯ = 𝑦 β†’ (𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦))
1815, 17impbid1 224 . . 3 ((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) β†’ ((𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦) ↔ π‘₯ = 𝑦))
197, 18dom2 9016 . 2 (𝒫 𝐡 ∈ V β†’ (topGenβ€˜π΅) β‰Ό 𝒫 𝐡)
201, 19syl 17 1 (𝐡 ∈ 𝑉 β†’ (topGenβ€˜π΅) β‰Ό 𝒫 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099  Vcvv 3471   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4603  βˆͺ cuni 4908   class class class wbr 5148  β€˜cfv 6548   β‰Ό cdom 8962  topGenctg 17419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-dom 8966  df-topgen 17425
This theorem is referenced by:  2ndcredom  23367  kelac2lem  42488
  Copyright terms: Public domain W3C validator