MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgdom Structured version   Visualization version   GIF version

Theorem tgdom 22893
Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
tgdom (𝐵𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵)

Proof of Theorem tgdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5314 . 2 (𝐵𝑉 → 𝒫 𝐵 ∈ V)
2 inss1 4184 . . . . 5 (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵
3 vpwex 5313 . . . . . . 7 𝒫 𝑥 ∈ V
43inex2 5254 . . . . . 6 (𝐵 ∩ 𝒫 𝑥) ∈ V
54elpw 4551 . . . . 5 ((𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵 ↔ (𝐵 ∩ 𝒫 𝑥) ⊆ 𝐵)
62, 5mpbir 231 . . . 4 (𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵
76a1i 11 . . 3 (𝑥 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝑥) ∈ 𝒫 𝐵)
8 unieq 4867 . . . . . . 7 ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦))
98adantl 481 . . . . . 6 (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦))
10 eltg4i 22875 . . . . . . 7 (𝑥 ∈ (topGen‘𝐵) → 𝑥 = (𝐵 ∩ 𝒫 𝑥))
1110ad2antrr 726 . . . . . 6 (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑥 = (𝐵 ∩ 𝒫 𝑥))
12 eltg4i 22875 . . . . . . 7 (𝑦 ∈ (topGen‘𝐵) → 𝑦 = (𝐵 ∩ 𝒫 𝑦))
1312ad2antlr 727 . . . . . 6 (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑦 = (𝐵 ∩ 𝒫 𝑦))
149, 11, 133eqtr4d 2776 . . . . 5 (((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) ∧ (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦)) → 𝑥 = 𝑦)
1514ex 412 . . . 4 ((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) → 𝑥 = 𝑦))
16 pweq 4561 . . . . 5 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦)
1716ineq2d 4167 . . . 4 (𝑥 = 𝑦 → (𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦))
1815, 17impbid1 225 . . 3 ((𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → ((𝐵 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑦) ↔ 𝑥 = 𝑦))
197, 18dom2 8917 . 2 (𝒫 𝐵 ∈ V → (topGen‘𝐵) ≼ 𝒫 𝐵)
201, 19syl 17 1 (𝐵𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cin 3896  wss 3897  𝒫 cpw 4547   cuni 4856   class class class wbr 5089  cfv 6481  cdom 8867  topGenctg 17341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-dom 8871  df-topgen 17347
This theorem is referenced by:  2ndcredom  23365  kelac2lem  43167
  Copyright terms: Public domain W3C validator