MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgdom Structured version   Visualization version   GIF version

Theorem tgdom 22472
Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
tgdom (𝐡 ∈ 𝑉 β†’ (topGenβ€˜π΅) β‰Ό 𝒫 𝐡)

Proof of Theorem tgdom
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5375 . 2 (𝐡 ∈ 𝑉 β†’ 𝒫 𝐡 ∈ V)
2 inss1 4227 . . . . 5 (𝐡 ∩ 𝒫 π‘₯) βŠ† 𝐡
3 vpwex 5374 . . . . . . 7 𝒫 π‘₯ ∈ V
43inex2 5317 . . . . . 6 (𝐡 ∩ 𝒫 π‘₯) ∈ V
54elpw 4605 . . . . 5 ((𝐡 ∩ 𝒫 π‘₯) ∈ 𝒫 𝐡 ↔ (𝐡 ∩ 𝒫 π‘₯) βŠ† 𝐡)
62, 5mpbir 230 . . . 4 (𝐡 ∩ 𝒫 π‘₯) ∈ 𝒫 𝐡
76a1i 11 . . 3 (π‘₯ ∈ (topGenβ€˜π΅) β†’ (𝐡 ∩ 𝒫 π‘₯) ∈ 𝒫 𝐡)
8 unieq 4918 . . . . . . 7 ((𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦) β†’ βˆͺ (𝐡 ∩ 𝒫 π‘₯) = βˆͺ (𝐡 ∩ 𝒫 𝑦))
98adantl 482 . . . . . 6 (((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) ∧ (𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦)) β†’ βˆͺ (𝐡 ∩ 𝒫 π‘₯) = βˆͺ (𝐡 ∩ 𝒫 𝑦))
10 eltg4i 22454 . . . . . . 7 (π‘₯ ∈ (topGenβ€˜π΅) β†’ π‘₯ = βˆͺ (𝐡 ∩ 𝒫 π‘₯))
1110ad2antrr 724 . . . . . 6 (((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) ∧ (𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦)) β†’ π‘₯ = βˆͺ (𝐡 ∩ 𝒫 π‘₯))
12 eltg4i 22454 . . . . . . 7 (𝑦 ∈ (topGenβ€˜π΅) β†’ 𝑦 = βˆͺ (𝐡 ∩ 𝒫 𝑦))
1312ad2antlr 725 . . . . . 6 (((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) ∧ (𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦)) β†’ 𝑦 = βˆͺ (𝐡 ∩ 𝒫 𝑦))
149, 11, 133eqtr4d 2782 . . . . 5 (((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) ∧ (𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦)) β†’ π‘₯ = 𝑦)
1514ex 413 . . . 4 ((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) β†’ ((𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦) β†’ π‘₯ = 𝑦))
16 pweq 4615 . . . . 5 (π‘₯ = 𝑦 β†’ 𝒫 π‘₯ = 𝒫 𝑦)
1716ineq2d 4211 . . . 4 (π‘₯ = 𝑦 β†’ (𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦))
1815, 17impbid1 224 . . 3 ((π‘₯ ∈ (topGenβ€˜π΅) ∧ 𝑦 ∈ (topGenβ€˜π΅)) β†’ ((𝐡 ∩ 𝒫 π‘₯) = (𝐡 ∩ 𝒫 𝑦) ↔ π‘₯ = 𝑦))
197, 18dom2 8987 . 2 (𝒫 𝐡 ∈ V β†’ (topGenβ€˜π΅) β‰Ό 𝒫 𝐡)
201, 19syl 17 1 (𝐡 ∈ 𝑉 β†’ (topGenβ€˜π΅) β‰Ό 𝒫 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4601  βˆͺ cuni 4907   class class class wbr 5147  β€˜cfv 6540   β‰Ό cdom 8933  topGenctg 17379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-dom 8937  df-topgen 17385
This theorem is referenced by:  2ndcredom  22945  kelac2lem  41791
  Copyright terms: Public domain W3C validator