Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensymd | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Deduction form of ensym 8721. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Ref | Expression |
---|---|
ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
2 | ensym 8721 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5070 ≈ cen 8665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-er 8433 df-en 8669 |
This theorem is referenced by: f1imaeng 8732 f1imaen2g 8733 en2snOLDOLD 8764 xpdom3 8787 omxpen 8791 mapdom2 8861 mapdom3 8862 limensuci 8866 phplem4 8872 php 8874 unxpdom2 8934 sucxpdom 8935 fiint 8996 marypha1lem 9097 infdifsn 9320 cnfcom2lem 9364 cardidm 9623 cardnueq0 9628 carden2a 9630 card1 9632 cardsdomel 9638 isinffi 9656 en2eqpr 9669 infxpenlem 9675 infxpidm2 9679 alephnbtwn2 9734 alephsucdom 9741 mappwen 9774 finnisoeu 9775 djuen 9831 dju1en 9833 djuassen 9840 xpdjuen 9841 infdju1 9851 pwdju1 9852 onadju 9855 cardadju 9856 djunum 9857 nnadju 9859 ficardadju 9861 ficardun 9862 ficardunOLD 9863 pwsdompw 9866 infdif2 9872 infxp 9877 ackbij1lem5 9886 cfss 9927 ominf4 9974 isfin4p1 9977 fin23lem27 9990 alephsuc3 10242 canthp1lem1 10314 canthp1lem2 10315 gchdju1 10318 gchinf 10319 pwfseqlem5 10325 pwdjundom 10329 gchdjuidm 10330 gchxpidm 10331 gchhar 10341 inttsk 10436 tskcard 10443 r1tskina 10444 tskuni 10445 hashkf 13949 fz1isolem 14078 isercolllem2 15280 summolem2 15331 zsum 15333 prodmolem2 15548 zprod 15550 4sqlem11 16559 mreexexd 17249 psgnunilem1 18991 simpgnsgd 19593 frlmisfrlm 20940 frlmiscvec 20941 ovoliunlem1 24546 rabfodom 30727 unidifsnel 30759 unidifsnne 30760 fnpreimac 30885 padct 30931 lindsdom 35677 matunitlindflem2 35680 heicant 35718 mblfinlem1 35720 sticksstones18 40020 sticksstones19 40021 eldioph2lem1 40470 isnumbasgrplem3 40818 fiuneneq 40910 harval3 41013 enrelmap 41467 enmappw 41469 |
Copyright terms: Public domain | W3C validator |