| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensymd | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Deduction form of ensym 8932. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Ref | Expression |
|---|---|
| ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
| 2 | ensym 8932 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5093 ≈ cen 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-er 8628 df-en 8876 |
| This theorem is referenced by: f1imaeng 8943 f1imaen2g 8944 xpdom3 8995 omxpen 8999 mapdom2 9068 mapdom3 9069 limensuci 9073 unxpdom2 9151 sucxpdom 9152 marypha1lem 9324 infdifsn 9554 cnfcom2lem 9598 cardidm 9859 cardnueq0 9864 carden2a 9866 card1 9868 cardsdomel 9874 isinffi 9892 en2eqpr 9905 infxpenlem 9911 infxpidm2 9915 alephnbtwn2 9970 alephsucdom 9977 mappwen 10010 finnisoeu 10011 djuen 10068 dju1en 10070 djuassen 10077 xpdjuen 10078 infdju1 10088 pwdju1 10089 onadju 10092 cardadju 10093 djunum 10094 nnadju 10096 ficardadju 10098 ficardun 10099 pwsdompw 10101 infdif2 10107 infxp 10112 ackbij1lem5 10121 cfss 10163 ominf4 10210 isfin4p1 10213 fin23lem27 10226 alephsuc3 10478 canthp1lem1 10550 canthp1lem2 10551 gchdju1 10554 gchinf 10555 pwfseqlem5 10561 pwdjundom 10565 gchdjuidm 10566 gchxpidm 10567 gchhar 10577 inttsk 10672 tskcard 10679 r1tskina 10680 tskuni 10681 hashkf 14241 fz1isolem 14370 isercolllem2 15575 summolem2 15625 zsum 15627 prodmolem2 15844 zprod 15846 4sqlem11 16869 mreexexd 17556 psgnunilem1 19407 simpgnsgd 20016 frlmisfrlm 21787 frlmiscvec 21788 ovoliunlem1 25431 rabfodom 32487 unidifsnel 32517 unidifsnne 32518 fnpreimac 32655 padct 32705 hashpss 32796 hashimaf1 32798 lindsdom 37674 matunitlindflem2 37677 heicant 37715 mblfinlem1 37717 sticksstones18 42277 sticksstones19 42278 eldioph2lem1 42877 isnumbasgrplem3 43222 fiuneneq 43309 harval3 43655 enrelmap 44114 enmappw 44116 |
| Copyright terms: Public domain | W3C validator |