![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensymd | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Deduction form of ensym 9063. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Ref | Expression |
---|---|
ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
2 | ensym 9063 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5166 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-er 8763 df-en 9004 |
This theorem is referenced by: f1imaeng 9074 f1imaen2g 9075 xpdom3 9136 omxpen 9140 mapdom2 9214 mapdom3 9215 limensuci 9219 phplem4OLD 9283 phpOLD 9285 unxpdom2 9317 sucxpdom 9318 fiintOLD 9395 marypha1lem 9502 infdifsn 9726 cnfcom2lem 9770 cardidm 10028 cardnueq0 10033 carden2a 10035 card1 10037 cardsdomel 10043 isinffi 10061 en2eqpr 10076 infxpenlem 10082 infxpidm2 10086 alephnbtwn2 10141 alephsucdom 10148 mappwen 10181 finnisoeu 10182 djuen 10239 dju1en 10241 djuassen 10248 xpdjuen 10249 infdju1 10259 pwdju1 10260 onadju 10263 cardadju 10264 djunum 10265 nnadju 10267 ficardadju 10269 ficardun 10270 pwsdompw 10272 infdif2 10278 infxp 10283 ackbij1lem5 10292 cfss 10334 ominf4 10381 isfin4p1 10384 fin23lem27 10397 alephsuc3 10649 canthp1lem1 10721 canthp1lem2 10722 gchdju1 10725 gchinf 10726 pwfseqlem5 10732 pwdjundom 10736 gchdjuidm 10737 gchxpidm 10738 gchhar 10748 inttsk 10843 tskcard 10850 r1tskina 10851 tskuni 10852 hashkf 14381 fz1isolem 14510 isercolllem2 15714 summolem2 15764 zsum 15766 prodmolem2 15983 zprod 15985 4sqlem11 17002 mreexexd 17706 psgnunilem1 19535 simpgnsgd 20144 frlmisfrlm 21891 frlmiscvec 21892 ovoliunlem1 25556 rabfodom 32533 unidifsnel 32563 unidifsnne 32564 fnpreimac 32689 padct 32733 lindsdom 37574 matunitlindflem2 37577 heicant 37615 mblfinlem1 37617 sticksstones18 42121 sticksstones19 42122 eldioph2lem1 42716 isnumbasgrplem3 43062 fiuneneq 43153 harval3 43500 enrelmap 43959 enmappw 43961 |
Copyright terms: Public domain | W3C validator |