| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensymd | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Deduction form of ensym 8925. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Ref | Expression |
|---|---|
| ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
| 2 | ensym 8925 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5091 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-er 8622 df-en 8870 |
| This theorem is referenced by: f1imaeng 8936 f1imaen2g 8937 xpdom3 8988 omxpen 8992 mapdom2 9061 mapdom3 9062 limensuci 9066 unxpdom2 9144 sucxpdom 9145 marypha1lem 9317 infdifsn 9547 cnfcom2lem 9591 cardidm 9849 cardnueq0 9854 carden2a 9856 card1 9858 cardsdomel 9864 isinffi 9882 en2eqpr 9895 infxpenlem 9901 infxpidm2 9905 alephnbtwn2 9960 alephsucdom 9967 mappwen 10000 finnisoeu 10001 djuen 10058 dju1en 10060 djuassen 10067 xpdjuen 10068 infdju1 10078 pwdju1 10079 onadju 10082 cardadju 10083 djunum 10084 nnadju 10086 ficardadju 10088 ficardun 10089 pwsdompw 10091 infdif2 10097 infxp 10102 ackbij1lem5 10111 cfss 10153 ominf4 10200 isfin4p1 10203 fin23lem27 10216 alephsuc3 10468 canthp1lem1 10540 canthp1lem2 10541 gchdju1 10544 gchinf 10545 pwfseqlem5 10551 pwdjundom 10555 gchdjuidm 10556 gchxpidm 10557 gchhar 10567 inttsk 10662 tskcard 10669 r1tskina 10670 tskuni 10671 hashkf 14236 fz1isolem 14365 isercolllem2 15570 summolem2 15620 zsum 15622 prodmolem2 15839 zprod 15841 4sqlem11 16864 mreexexd 17551 psgnunilem1 19403 simpgnsgd 20012 frlmisfrlm 21783 frlmiscvec 21784 ovoliunlem1 25428 rabfodom 32480 unidifsnel 32510 unidifsnne 32511 fnpreimac 32648 padct 32696 hashpss 32786 hashimaf1 32788 lindsdom 37653 matunitlindflem2 37656 heicant 37694 mblfinlem1 37696 sticksstones18 42196 sticksstones19 42197 eldioph2lem1 42792 isnumbasgrplem3 43137 fiuneneq 43224 harval3 43570 enrelmap 44029 enmappw 44031 |
| Copyright terms: Public domain | W3C validator |