![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensymd | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Deduction form of ensym 9042. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Ref | Expression |
---|---|
ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
2 | ensym 9042 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5148 ≈ cen 8981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-er 8744 df-en 8985 |
This theorem is referenced by: f1imaeng 9053 f1imaen2g 9054 xpdom3 9109 omxpen 9113 mapdom2 9187 mapdom3 9188 limensuci 9192 phplem4OLD 9255 phpOLD 9257 unxpdom2 9288 sucxpdom 9289 fiintOLD 9365 marypha1lem 9471 infdifsn 9695 cnfcom2lem 9739 cardidm 9997 cardnueq0 10002 carden2a 10004 card1 10006 cardsdomel 10012 isinffi 10030 en2eqpr 10045 infxpenlem 10051 infxpidm2 10055 alephnbtwn2 10110 alephsucdom 10117 mappwen 10150 finnisoeu 10151 djuen 10208 dju1en 10210 djuassen 10217 xpdjuen 10218 infdju1 10228 pwdju1 10229 onadju 10232 cardadju 10233 djunum 10234 nnadju 10236 ficardadju 10238 ficardun 10239 pwsdompw 10241 infdif2 10247 infxp 10252 ackbij1lem5 10261 cfss 10303 ominf4 10350 isfin4p1 10353 fin23lem27 10366 alephsuc3 10618 canthp1lem1 10690 canthp1lem2 10691 gchdju1 10694 gchinf 10695 pwfseqlem5 10701 pwdjundom 10705 gchdjuidm 10706 gchxpidm 10707 gchhar 10717 inttsk 10812 tskcard 10819 r1tskina 10820 tskuni 10821 hashkf 14368 fz1isolem 14497 isercolllem2 15699 summolem2 15749 zsum 15751 prodmolem2 15968 zprod 15970 4sqlem11 16989 mreexexd 17693 psgnunilem1 19526 simpgnsgd 20135 frlmisfrlm 21886 frlmiscvec 21887 ovoliunlem1 25551 rabfodom 32533 unidifsnel 32561 unidifsnne 32562 fnpreimac 32688 padct 32737 lindsdom 37601 matunitlindflem2 37604 heicant 37642 mblfinlem1 37644 sticksstones18 42146 sticksstones19 42147 eldioph2lem1 42748 isnumbasgrplem3 43094 fiuneneq 43181 harval3 43528 enrelmap 43987 enmappw 43989 |
Copyright terms: Public domain | W3C validator |