| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensymd | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Deduction form of ensym 8977. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Ref | Expression |
|---|---|
| ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
| 2 | ensym 8977 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5110 ≈ cen 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-er 8674 df-en 8922 |
| This theorem is referenced by: f1imaeng 8988 f1imaen2g 8989 xpdom3 9044 omxpen 9048 mapdom2 9118 mapdom3 9119 limensuci 9123 unxpdom2 9208 sucxpdom 9209 fiintOLD 9285 marypha1lem 9391 infdifsn 9617 cnfcom2lem 9661 cardidm 9919 cardnueq0 9924 carden2a 9926 card1 9928 cardsdomel 9934 isinffi 9952 en2eqpr 9967 infxpenlem 9973 infxpidm2 9977 alephnbtwn2 10032 alephsucdom 10039 mappwen 10072 finnisoeu 10073 djuen 10130 dju1en 10132 djuassen 10139 xpdjuen 10140 infdju1 10150 pwdju1 10151 onadju 10154 cardadju 10155 djunum 10156 nnadju 10158 ficardadju 10160 ficardun 10161 pwsdompw 10163 infdif2 10169 infxp 10174 ackbij1lem5 10183 cfss 10225 ominf4 10272 isfin4p1 10275 fin23lem27 10288 alephsuc3 10540 canthp1lem1 10612 canthp1lem2 10613 gchdju1 10616 gchinf 10617 pwfseqlem5 10623 pwdjundom 10627 gchdjuidm 10628 gchxpidm 10629 gchhar 10639 inttsk 10734 tskcard 10741 r1tskina 10742 tskuni 10743 hashkf 14304 fz1isolem 14433 isercolllem2 15639 summolem2 15689 zsum 15691 prodmolem2 15908 zprod 15910 4sqlem11 16933 mreexexd 17616 psgnunilem1 19430 simpgnsgd 20039 frlmisfrlm 21764 frlmiscvec 21765 ovoliunlem1 25410 rabfodom 32441 unidifsnel 32471 unidifsnne 32472 fnpreimac 32602 padct 32650 hashpss 32741 lindsdom 37615 matunitlindflem2 37618 heicant 37656 mblfinlem1 37658 sticksstones18 42159 sticksstones19 42160 eldioph2lem1 42755 isnumbasgrplem3 43101 fiuneneq 43188 harval3 43534 enrelmap 43993 enmappw 43995 |
| Copyright terms: Public domain | W3C validator |