| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensymd | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Deduction form of ensym 9017. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Ref | Expression |
|---|---|
| ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
| 2 | ensym 9017 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5119 ≈ cen 8956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-er 8719 df-en 8960 |
| This theorem is referenced by: f1imaeng 9028 f1imaen2g 9029 xpdom3 9084 omxpen 9088 mapdom2 9162 mapdom3 9163 limensuci 9167 phpOLD 9231 unxpdom2 9262 sucxpdom 9263 fiintOLD 9339 marypha1lem 9445 infdifsn 9671 cnfcom2lem 9715 cardidm 9973 cardnueq0 9978 carden2a 9980 card1 9982 cardsdomel 9988 isinffi 10006 en2eqpr 10021 infxpenlem 10027 infxpidm2 10031 alephnbtwn2 10086 alephsucdom 10093 mappwen 10126 finnisoeu 10127 djuen 10184 dju1en 10186 djuassen 10193 xpdjuen 10194 infdju1 10204 pwdju1 10205 onadju 10208 cardadju 10209 djunum 10210 nnadju 10212 ficardadju 10214 ficardun 10215 pwsdompw 10217 infdif2 10223 infxp 10228 ackbij1lem5 10237 cfss 10279 ominf4 10326 isfin4p1 10329 fin23lem27 10342 alephsuc3 10594 canthp1lem1 10666 canthp1lem2 10667 gchdju1 10670 gchinf 10671 pwfseqlem5 10677 pwdjundom 10681 gchdjuidm 10682 gchxpidm 10683 gchhar 10693 inttsk 10788 tskcard 10795 r1tskina 10796 tskuni 10797 hashkf 14350 fz1isolem 14479 isercolllem2 15682 summolem2 15732 zsum 15734 prodmolem2 15951 zprod 15953 4sqlem11 16975 mreexexd 17660 psgnunilem1 19474 simpgnsgd 20083 frlmisfrlm 21808 frlmiscvec 21809 ovoliunlem1 25455 rabfodom 32486 unidifsnel 32516 unidifsnne 32517 fnpreimac 32649 padct 32697 hashpss 32788 lindsdom 37638 matunitlindflem2 37641 heicant 37679 mblfinlem1 37681 sticksstones18 42177 sticksstones19 42178 eldioph2lem1 42783 isnumbasgrplem3 43129 fiuneneq 43216 harval3 43562 enrelmap 44021 enmappw 44023 |
| Copyright terms: Public domain | W3C validator |