Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensymd | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Deduction form of ensym 8789. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Ref | Expression |
---|---|
ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
2 | ensym 8789 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5074 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-er 8498 df-en 8734 |
This theorem is referenced by: f1imaeng 8800 f1imaen2g 8801 en2snOLDOLD 8833 xpdom3 8857 omxpen 8861 mapdom2 8935 mapdom3 8936 limensuci 8940 phplem4OLD 9003 phpOLD 9005 unxpdom2 9031 sucxpdom 9032 fiint 9091 marypha1lem 9192 infdifsn 9415 cnfcom2lem 9459 cardidm 9717 cardnueq0 9722 carden2a 9724 card1 9726 cardsdomel 9732 isinffi 9750 en2eqpr 9763 infxpenlem 9769 infxpidm2 9773 alephnbtwn2 9828 alephsucdom 9835 mappwen 9868 finnisoeu 9869 djuen 9925 dju1en 9927 djuassen 9934 xpdjuen 9935 infdju1 9945 pwdju1 9946 onadju 9949 cardadju 9950 djunum 9951 nnadju 9953 ficardadju 9955 ficardun 9956 ficardunOLD 9957 pwsdompw 9960 infdif2 9966 infxp 9971 ackbij1lem5 9980 cfss 10021 ominf4 10068 isfin4p1 10071 fin23lem27 10084 alephsuc3 10336 canthp1lem1 10408 canthp1lem2 10409 gchdju1 10412 gchinf 10413 pwfseqlem5 10419 pwdjundom 10423 gchdjuidm 10424 gchxpidm 10425 gchhar 10435 inttsk 10530 tskcard 10537 r1tskina 10538 tskuni 10539 hashkf 14046 fz1isolem 14175 isercolllem2 15377 summolem2 15428 zsum 15430 prodmolem2 15645 zprod 15647 4sqlem11 16656 mreexexd 17357 psgnunilem1 19101 simpgnsgd 19703 frlmisfrlm 21055 frlmiscvec 21056 ovoliunlem1 24666 rabfodom 30851 unidifsnel 30883 unidifsnne 30884 fnpreimac 31008 padct 31054 lindsdom 35771 matunitlindflem2 35774 heicant 35812 mblfinlem1 35814 sticksstones18 40120 sticksstones19 40121 eldioph2lem1 40582 isnumbasgrplem3 40930 fiuneneq 41022 harval3 41145 enrelmap 41605 enmappw 41607 |
Copyright terms: Public domain | W3C validator |