Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensymd | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Deduction form of ensym 8617. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Ref | Expression |
---|---|
ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
2 | ensym 8617 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5040 ≈ cen 8565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-er 8333 df-en 8569 |
This theorem is referenced by: f1imaeng 8628 f1imaen2g 8629 en2snOLD 8654 xpdom3 8677 omxpen 8681 mapdom2 8751 mapdom3 8752 limensuci 8756 phplem4 8762 php 8764 unxpdom2 8818 sucxpdom 8819 fiint 8882 marypha1lem 8983 infdifsn 9206 cnfcom2lem 9250 cardidm 9474 cardnueq0 9479 carden2a 9481 card1 9483 cardsdomel 9489 isinffi 9507 en2eqpr 9520 infxpenlem 9526 infxpidm2 9530 alephnbtwn2 9585 alephsucdom 9592 mappwen 9625 finnisoeu 9626 djuen 9682 dju1en 9684 djuassen 9691 xpdjuen 9692 infdju1 9702 pwdju1 9703 onadju 9706 cardadju 9707 djunum 9708 nnadju 9710 ficardadju 9712 ficardun 9713 ficardunOLD 9714 pwsdompw 9717 infdif2 9723 infxp 9728 ackbij1lem5 9737 cfss 9778 ominf4 9825 isfin4p1 9828 fin23lem27 9841 alephsuc3 10093 canthp1lem1 10165 canthp1lem2 10166 gchdju1 10169 gchinf 10170 pwfseqlem5 10176 pwdjundom 10180 gchdjuidm 10181 gchxpidm 10182 gchhar 10192 inttsk 10287 tskcard 10294 r1tskina 10295 tskuni 10296 hashkf 13797 fz1isolem 13926 isercolllem2 15128 summolem2 15179 zsum 15181 prodmolem2 15394 zprod 15396 4sqlem11 16404 mreexexd 17035 psgnunilem1 18752 simpgnsgd 19354 frlmisfrlm 20677 frlmiscvec 20678 ovoliunlem1 24267 rabfodom 30438 unidifsnel 30470 unidifsnne 30471 fnpreimac 30596 padct 30642 lindsdom 35427 matunitlindflem2 35430 heicant 35468 mblfinlem1 35470 eldioph2lem1 40195 isnumbasgrplem3 40543 fiuneneq 40635 harval3 40738 enrelmap 41192 enmappw 41194 |
Copyright terms: Public domain | W3C validator |