| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensymd | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Deduction form of ensym 8974. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Ref | Expression |
|---|---|
| ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
| 2 | ensym 8974 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5107 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-er 8671 df-en 8919 |
| This theorem is referenced by: f1imaeng 8985 f1imaen2g 8986 xpdom3 9039 omxpen 9043 mapdom2 9112 mapdom3 9113 limensuci 9117 unxpdom2 9201 sucxpdom 9202 fiintOLD 9278 marypha1lem 9384 infdifsn 9610 cnfcom2lem 9654 cardidm 9912 cardnueq0 9917 carden2a 9919 card1 9921 cardsdomel 9927 isinffi 9945 en2eqpr 9960 infxpenlem 9966 infxpidm2 9970 alephnbtwn2 10025 alephsucdom 10032 mappwen 10065 finnisoeu 10066 djuen 10123 dju1en 10125 djuassen 10132 xpdjuen 10133 infdju1 10143 pwdju1 10144 onadju 10147 cardadju 10148 djunum 10149 nnadju 10151 ficardadju 10153 ficardun 10154 pwsdompw 10156 infdif2 10162 infxp 10167 ackbij1lem5 10176 cfss 10218 ominf4 10265 isfin4p1 10268 fin23lem27 10281 alephsuc3 10533 canthp1lem1 10605 canthp1lem2 10606 gchdju1 10609 gchinf 10610 pwfseqlem5 10616 pwdjundom 10620 gchdjuidm 10621 gchxpidm 10622 gchhar 10632 inttsk 10727 tskcard 10734 r1tskina 10735 tskuni 10736 hashkf 14297 fz1isolem 14426 isercolllem2 15632 summolem2 15682 zsum 15684 prodmolem2 15901 zprod 15903 4sqlem11 16926 mreexexd 17609 psgnunilem1 19423 simpgnsgd 20032 frlmisfrlm 21757 frlmiscvec 21758 ovoliunlem1 25403 rabfodom 32434 unidifsnel 32464 unidifsnne 32465 fnpreimac 32595 padct 32643 hashpss 32734 lindsdom 37608 matunitlindflem2 37611 heicant 37649 mblfinlem1 37651 sticksstones18 42152 sticksstones19 42153 eldioph2lem1 42748 isnumbasgrplem3 43094 fiuneneq 43181 harval3 43527 enrelmap 43986 enmappw 43988 |
| Copyright terms: Public domain | W3C validator |