| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensymd | Structured version Visualization version GIF version | ||
| Description: Symmetry of equinumerosity. Deduction form of ensym 8935. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Ref | Expression |
|---|---|
| ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
| 2 | ensym 8935 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5095 ≈ cen 8876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-er 8632 df-en 8880 |
| This theorem is referenced by: f1imaeng 8946 f1imaen2g 8947 xpdom3 8999 omxpen 9003 mapdom2 9072 mapdom3 9073 limensuci 9077 unxpdom2 9159 sucxpdom 9160 fiintOLD 9236 marypha1lem 9342 infdifsn 9572 cnfcom2lem 9616 cardidm 9874 cardnueq0 9879 carden2a 9881 card1 9883 cardsdomel 9889 isinffi 9907 en2eqpr 9920 infxpenlem 9926 infxpidm2 9930 alephnbtwn2 9985 alephsucdom 9992 mappwen 10025 finnisoeu 10026 djuen 10083 dju1en 10085 djuassen 10092 xpdjuen 10093 infdju1 10103 pwdju1 10104 onadju 10107 cardadju 10108 djunum 10109 nnadju 10111 ficardadju 10113 ficardun 10114 pwsdompw 10116 infdif2 10122 infxp 10127 ackbij1lem5 10136 cfss 10178 ominf4 10225 isfin4p1 10228 fin23lem27 10241 alephsuc3 10493 canthp1lem1 10565 canthp1lem2 10566 gchdju1 10569 gchinf 10570 pwfseqlem5 10576 pwdjundom 10580 gchdjuidm 10581 gchxpidm 10582 gchhar 10592 inttsk 10687 tskcard 10694 r1tskina 10695 tskuni 10696 hashkf 14257 fz1isolem 14386 isercolllem2 15591 summolem2 15641 zsum 15643 prodmolem2 15860 zprod 15862 4sqlem11 16885 mreexexd 17572 psgnunilem1 19390 simpgnsgd 19999 frlmisfrlm 21773 frlmiscvec 21774 ovoliunlem1 25419 rabfodom 32467 unidifsnel 32497 unidifsnne 32498 fnpreimac 32628 padct 32676 hashpss 32767 lindsdom 37593 matunitlindflem2 37596 heicant 37634 mblfinlem1 37636 sticksstones18 42137 sticksstones19 42138 eldioph2lem1 42733 isnumbasgrplem3 43078 fiuneneq 43165 harval3 43511 enrelmap 43970 enmappw 43972 |
| Copyright terms: Public domain | W3C validator |