| Step | Hyp | Ref
| Expression |
| 1 | | 1onn 8678 |
. . . 4
⊢
1o ∈ ω |
| 2 | | ensn1g 9062 |
. . . 4
⊢ (𝐴 ∈ V → {𝐴} ≈
1o) |
| 3 | | breq2 5147 |
. . . . 5
⊢ (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o)) |
| 4 | 3 | rspcev 3622 |
. . . 4
⊢
((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 5 | 1, 2, 4 | sylancr 587 |
. . 3
⊢ (𝐴 ∈ V → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 6 | | isfi 9016 |
. . 3
⊢ ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 7 | 5, 6 | sylibr 234 |
. 2
⊢ (𝐴 ∈ V → {𝐴} ∈ Fin) |
| 8 | | snprc 4717 |
. . 3
⊢ (¬
𝐴 ∈ V ↔ {𝐴} = ∅) |
| 9 | | 0fi 9082 |
. . . 4
⊢ ∅
∈ Fin |
| 10 | | eleq1 2829 |
. . . 4
⊢ ({𝐴} = ∅ → ({𝐴} ∈ Fin ↔ ∅
∈ Fin)) |
| 11 | 9, 10 | mpbiri 258 |
. . 3
⊢ ({𝐴} = ∅ → {𝐴} ∈ Fin) |
| 12 | 8, 11 | sylbi 217 |
. 2
⊢ (¬
𝐴 ∈ V → {𝐴} ∈ Fin) |
| 13 | 7, 12 | pm2.61i 182 |
1
⊢ {𝐴} ∈ Fin |