| Step | Hyp | Ref
| Expression |
| 1 | | eqop 8057 |
. . . . 5
⊢ (𝑔 ∈ (𝑇 × 𝐸) → (𝑔 = 〈(𝑠‘𝐹), 0 〉 ↔
((1st ‘𝑔)
= (𝑠‘𝐹) ∧ (2nd
‘𝑔) = 0
))) |
| 2 | 1 | adantl 481 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (𝑔 = 〈(𝑠‘𝐹), 0 〉 ↔
((1st ‘𝑔)
= (𝑠‘𝐹) ∧ (2nd
‘𝑔) = 0
))) |
| 3 | 2 | rexbidv 3178 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (∃𝑠 ∈ 𝐸 𝑔 = 〈(𝑠‘𝐹), 0 〉 ↔ ∃𝑠 ∈ 𝐸 ((1st ‘𝑔) = (𝑠‘𝐹) ∧ (2nd ‘𝑔) = 0 ))) |
| 4 | | r19.41v 3188 |
. . . 4
⊢
(∃𝑠 ∈
𝐸 ((1st
‘𝑔) = (𝑠‘𝐹) ∧ (2nd ‘𝑔) = 0 ) ↔ (∃𝑠 ∈ 𝐸 (1st ‘𝑔) = (𝑠‘𝐹) ∧ (2nd ‘𝑔) = 0 )) |
| 5 | | fvex 6918 |
. . . . . . . 8
⊢
(1st ‘𝑔) ∈ V |
| 6 | | eqeq1 2740 |
. . . . . . . . 9
⊢ (𝑓 = (1st ‘𝑔) → (𝑓 = (𝑠‘𝐹) ↔ (1st ‘𝑔) = (𝑠‘𝐹))) |
| 7 | 6 | rexbidv 3178 |
. . . . . . . 8
⊢ (𝑓 = (1st ‘𝑔) → (∃𝑠 ∈ 𝐸 𝑓 = (𝑠‘𝐹) ↔ ∃𝑠 ∈ 𝐸 (1st ‘𝑔) = (𝑠‘𝐹))) |
| 8 | 5, 7 | elab 3678 |
. . . . . . 7
⊢
((1st ‘𝑔) ∈ {𝑓 ∣ ∃𝑠 ∈ 𝐸 𝑓 = (𝑠‘𝐹)} ↔ ∃𝑠 ∈ 𝐸 (1st ‘𝑔) = (𝑠‘𝐹)) |
| 9 | | dvhb1dim.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝐾) |
| 10 | | dvhb1dim.h |
. . . . . . . . . 10
⊢ 𝐻 = (LHyp‘𝐾) |
| 11 | | dvhb1dim.t |
. . . . . . . . . 10
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 12 | | dvhb1dim.r |
. . . . . . . . . 10
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 13 | | dvhb1dim.e |
. . . . . . . . . 10
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| 14 | 9, 10, 11, 12, 13 | dva1dim 40988 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑓 ∣ ∃𝑠 ∈ 𝐸 𝑓 = (𝑠‘𝐹)} = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ (𝑅‘𝐹)}) |
| 15 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → {𝑓 ∣ ∃𝑠 ∈ 𝐸 𝑓 = (𝑠‘𝐹)} = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ (𝑅‘𝐹)}) |
| 16 | 15 | eleq2d 2826 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((1st ‘𝑔) ∈ {𝑓 ∣ ∃𝑠 ∈ 𝐸 𝑓 = (𝑠‘𝐹)} ↔ (1st ‘𝑔) ∈ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ (𝑅‘𝐹)})) |
| 17 | 8, 16 | bitr3id 285 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (∃𝑠 ∈ 𝐸 (1st ‘𝑔) = (𝑠‘𝐹) ↔ (1st ‘𝑔) ∈ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ (𝑅‘𝐹)})) |
| 18 | | xp1st 8047 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝑇 × 𝐸) → (1st ‘𝑔) ∈ 𝑇) |
| 19 | 18 | adantl 481 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (1st ‘𝑔) ∈ 𝑇) |
| 20 | | fveq2 6905 |
. . . . . . . . 9
⊢ (𝑓 = (1st ‘𝑔) → (𝑅‘𝑓) = (𝑅‘(1st ‘𝑔))) |
| 21 | 20 | breq1d 5152 |
. . . . . . . 8
⊢ (𝑓 = (1st ‘𝑔) → ((𝑅‘𝑓) ≤ (𝑅‘𝐹) ↔ (𝑅‘(1st ‘𝑔)) ≤ (𝑅‘𝐹))) |
| 22 | 21 | elrab3 3692 |
. . . . . . 7
⊢
((1st ‘𝑔) ∈ 𝑇 → ((1st ‘𝑔) ∈ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ (𝑅‘𝐹)} ↔ (𝑅‘(1st ‘𝑔)) ≤ (𝑅‘𝐹))) |
| 23 | 19, 22 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((1st ‘𝑔) ∈ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ (𝑅‘𝐹)} ↔ (𝑅‘(1st ‘𝑔)) ≤ (𝑅‘𝐹))) |
| 24 | 17, 23 | bitrd 279 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (∃𝑠 ∈ 𝐸 (1st ‘𝑔) = (𝑠‘𝐹) ↔ (𝑅‘(1st ‘𝑔)) ≤ (𝑅‘𝐹))) |
| 25 | 24 | anbi1d 631 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((∃𝑠 ∈ 𝐸 (1st ‘𝑔) = (𝑠‘𝐹) ∧ (2nd ‘𝑔) = 0 ) ↔ ((𝑅‘(1st
‘𝑔)) ≤ (𝑅‘𝐹) ∧ (2nd ‘𝑔) = 0 ))) |
| 26 | 4, 25 | bitrid 283 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (∃𝑠 ∈ 𝐸 ((1st ‘𝑔) = (𝑠‘𝐹) ∧ (2nd ‘𝑔) = 0 ) ↔ ((𝑅‘(1st
‘𝑔)) ≤ (𝑅‘𝐹) ∧ (2nd ‘𝑔) = 0 ))) |
| 27 | 3, 26 | bitrd 279 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (∃𝑠 ∈ 𝐸 𝑔 = 〈(𝑠‘𝐹), 0 〉 ↔ ((𝑅‘(1st
‘𝑔)) ≤ (𝑅‘𝐹) ∧ (2nd ‘𝑔) = 0 ))) |
| 28 | 27 | rabbidva 3442 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠 ∈ 𝐸 𝑔 = 〈(𝑠‘𝐹), 0 〉} = {𝑔 ∈ (𝑇 × 𝐸) ∣ ((𝑅‘(1st ‘𝑔)) ≤ (𝑅‘𝐹) ∧ (2nd ‘𝑔) = 0 )}) |