Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhb1dimN Structured version   Visualization version   GIF version

Theorem dvhb1dimN 39000
Description: Two expressions for the 1-dimensional subspaces of vector space H, in the isomorphism B case where the 2nd vector component is zero. (Contributed by NM, 23-Feb-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvhb1dim.l = (le‘𝐾)
dvhb1dim.h 𝐻 = (LHyp‘𝐾)
dvhb1dim.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhb1dim.r 𝑅 = ((trL‘𝐾)‘𝑊)
dvhb1dim.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhb1dim.o 0 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dvhb1dimN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 0 ⟩} = {𝑔 ∈ (𝑇 × 𝐸) ∣ ((𝑅‘(1st𝑔)) (𝑅𝐹) ∧ (2nd𝑔) = 0 )})
Distinct variable groups:   ,𝑠   𝐸,𝑠   𝑔,𝑠,𝐹   𝑔,𝐻,𝑠   𝑔,𝐾,𝑠   0 ,𝑠   𝑅,𝑠   𝑔,,𝑇,𝑠   𝑔,𝑊,𝑠
Allowed substitution hints:   𝐵(𝑔,,𝑠)   𝑅(𝑔,)   𝐸(𝑔,)   𝐹()   𝐻()   𝐾()   (𝑔,)   𝑊()   0 (𝑔,)

Proof of Theorem dvhb1dimN
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqop 7873 . . . . 5 (𝑔 ∈ (𝑇 × 𝐸) → (𝑔 = ⟨(𝑠𝐹), 0 ⟩ ↔ ((1st𝑔) = (𝑠𝐹) ∧ (2nd𝑔) = 0 )))
21adantl 482 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (𝑔 = ⟨(𝑠𝐹), 0 ⟩ ↔ ((1st𝑔) = (𝑠𝐹) ∧ (2nd𝑔) = 0 )))
32rexbidv 3226 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 0 ⟩ ↔ ∃𝑠𝐸 ((1st𝑔) = (𝑠𝐹) ∧ (2nd𝑔) = 0 )))
4 r19.41v 3276 . . . 4 (∃𝑠𝐸 ((1st𝑔) = (𝑠𝐹) ∧ (2nd𝑔) = 0 ) ↔ (∃𝑠𝐸 (1st𝑔) = (𝑠𝐹) ∧ (2nd𝑔) = 0 ))
5 fvex 6787 . . . . . . . 8 (1st𝑔) ∈ V
6 eqeq1 2742 . . . . . . . . 9 (𝑓 = (1st𝑔) → (𝑓 = (𝑠𝐹) ↔ (1st𝑔) = (𝑠𝐹)))
76rexbidv 3226 . . . . . . . 8 (𝑓 = (1st𝑔) → (∃𝑠𝐸 𝑓 = (𝑠𝐹) ↔ ∃𝑠𝐸 (1st𝑔) = (𝑠𝐹)))
85, 7elab 3609 . . . . . . 7 ((1st𝑔) ∈ {𝑓 ∣ ∃𝑠𝐸 𝑓 = (𝑠𝐹)} ↔ ∃𝑠𝐸 (1st𝑔) = (𝑠𝐹))
9 dvhb1dim.l . . . . . . . . . 10 = (le‘𝐾)
10 dvhb1dim.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
11 dvhb1dim.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
12 dvhb1dim.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
13 dvhb1dim.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
149, 10, 11, 12, 13dva1dim 38999 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑓 ∣ ∃𝑠𝐸 𝑓 = (𝑠𝐹)} = {𝑓𝑇 ∣ (𝑅𝑓) (𝑅𝐹)})
1514adantr 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → {𝑓 ∣ ∃𝑠𝐸 𝑓 = (𝑠𝐹)} = {𝑓𝑇 ∣ (𝑅𝑓) (𝑅𝐹)})
1615eleq2d 2824 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((1st𝑔) ∈ {𝑓 ∣ ∃𝑠𝐸 𝑓 = (𝑠𝐹)} ↔ (1st𝑔) ∈ {𝑓𝑇 ∣ (𝑅𝑓) (𝑅𝐹)}))
178, 16bitr3id 285 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (∃𝑠𝐸 (1st𝑔) = (𝑠𝐹) ↔ (1st𝑔) ∈ {𝑓𝑇 ∣ (𝑅𝑓) (𝑅𝐹)}))
18 xp1st 7863 . . . . . . . 8 (𝑔 ∈ (𝑇 × 𝐸) → (1st𝑔) ∈ 𝑇)
1918adantl 482 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (1st𝑔) ∈ 𝑇)
20 fveq2 6774 . . . . . . . . 9 (𝑓 = (1st𝑔) → (𝑅𝑓) = (𝑅‘(1st𝑔)))
2120breq1d 5084 . . . . . . . 8 (𝑓 = (1st𝑔) → ((𝑅𝑓) (𝑅𝐹) ↔ (𝑅‘(1st𝑔)) (𝑅𝐹)))
2221elrab3 3625 . . . . . . 7 ((1st𝑔) ∈ 𝑇 → ((1st𝑔) ∈ {𝑓𝑇 ∣ (𝑅𝑓) (𝑅𝐹)} ↔ (𝑅‘(1st𝑔)) (𝑅𝐹)))
2319, 22syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((1st𝑔) ∈ {𝑓𝑇 ∣ (𝑅𝑓) (𝑅𝐹)} ↔ (𝑅‘(1st𝑔)) (𝑅𝐹)))
2417, 23bitrd 278 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (∃𝑠𝐸 (1st𝑔) = (𝑠𝐹) ↔ (𝑅‘(1st𝑔)) (𝑅𝐹)))
2524anbi1d 630 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → ((∃𝑠𝐸 (1st𝑔) = (𝑠𝐹) ∧ (2nd𝑔) = 0 ) ↔ ((𝑅‘(1st𝑔)) (𝑅𝐹) ∧ (2nd𝑔) = 0 )))
264, 25syl5bb 283 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (∃𝑠𝐸 ((1st𝑔) = (𝑠𝐹) ∧ (2nd𝑔) = 0 ) ↔ ((𝑅‘(1st𝑔)) (𝑅𝐹) ∧ (2nd𝑔) = 0 )))
273, 26bitrd 278 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑔 ∈ (𝑇 × 𝐸)) → (∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 0 ⟩ ↔ ((𝑅‘(1st𝑔)) (𝑅𝐹) ∧ (2nd𝑔) = 0 )))
2827rabbidva 3413 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 0 ⟩} = {𝑔 ∈ (𝑇 × 𝐸) ∣ ((𝑅‘(1st𝑔)) (𝑅𝐹) ∧ (2nd𝑔) = 0 )})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  {crab 3068  cop 4567   class class class wbr 5074  cmpt 5157   I cid 5488   × cxp 5587  cres 5591  cfv 6433  1st c1st 7829  2nd c2nd 7830  lecple 16969  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  trLctrl 38172  TEndoctendo 38766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tendo 38769
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator