MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkcomp Structured version   Visualization version   GIF version

Theorem wlkcomp 27672
Description: A walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.)
Hypotheses
Ref Expression
wlkcomp.v 𝑉 = (Vtx‘𝐺)
wlkcomp.i 𝐼 = (iEdg‘𝐺)
wlkcomp.1 𝐹 = (1st𝑊)
wlkcomp.2 𝑃 = (2nd𝑊)
Assertion
Ref Expression
wlkcomp ((𝐺𝑈𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (Walks‘𝐺) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘
Allowed substitution hints:   𝑆(𝑘)   𝑇(𝑘)   𝑈(𝑘)   𝐼(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem wlkcomp
StepHypRef Expression
1 wlkcomp.1 . . . . . . 7 𝐹 = (1st𝑊)
21eqcomi 2745 . . . . . 6 (1st𝑊) = 𝐹
3 wlkcomp.2 . . . . . . 7 𝑃 = (2nd𝑊)
43eqcomi 2745 . . . . . 6 (2nd𝑊) = 𝑃
52, 4pm3.2i 474 . . . . 5 ((1st𝑊) = 𝐹 ∧ (2nd𝑊) = 𝑃)
6 eqop 7781 . . . . 5 (𝑊 ∈ (𝑆 × 𝑇) → (𝑊 = ⟨𝐹, 𝑃⟩ ↔ ((1st𝑊) = 𝐹 ∧ (2nd𝑊) = 𝑃)))
75, 6mpbiri 261 . . . 4 (𝑊 ∈ (𝑆 × 𝑇) → 𝑊 = ⟨𝐹, 𝑃⟩)
87eleq1d 2815 . . 3 (𝑊 ∈ (𝑆 × 𝑇) → (𝑊 ∈ (Walks‘𝐺) ↔ ⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺)))
9 df-br 5040 . . 3 (𝐹(Walks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺))
108, 9bitr4di 292 . 2 (𝑊 ∈ (𝑆 × 𝑇) → (𝑊 ∈ (Walks‘𝐺) ↔ 𝐹(Walks‘𝐺)𝑃))
11 wlkcomp.v . . 3 𝑉 = (Vtx‘𝐺)
12 wlkcomp.i . . 3 𝐼 = (iEdg‘𝐺)
1311, 12iswlkg 27655 . 2 (𝐺𝑈 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
1410, 13sylan9bbr 514 1 ((𝐺𝑈𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (Walks‘𝐺) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  if-wif 1063  w3a 1089   = wceq 1543  wcel 2112  wral 3051  wss 3853  {csn 4527  {cpr 4529  cop 4533   class class class wbr 5039   × cxp 5534  dom cdm 5536  wf 6354  cfv 6358  (class class class)co 7191  1st c1st 7737  2nd c2nd 7738  0cc0 10694  1c1 10695   + caddc 10697  ...cfz 13060  ..^cfzo 13203  chash 13861  Word cword 14034  Vtxcvtx 27041  iEdgciedg 27042  Walkscwlks 27638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-fzo 13204  df-hash 13862  df-word 14035  df-wlks 27641
This theorem is referenced by:  wlkcompim  27673
  Copyright terms: Public domain W3C validator