| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkcomp | Structured version Visualization version GIF version | ||
| Description: A walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.) |
| Ref | Expression |
|---|---|
| wlkcomp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wlkcomp.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| wlkcomp.1 | ⊢ 𝐹 = (1st ‘𝑊) |
| wlkcomp.2 | ⊢ 𝑃 = (2nd ‘𝑊) |
| Ref | Expression |
|---|---|
| wlkcomp | ⊢ ((𝐺 ∈ 𝑈 ∧ 𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (Walks‘𝐺) ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkcomp.1 | . . . . . . 7 ⊢ 𝐹 = (1st ‘𝑊) | |
| 2 | 1 | eqcomi 2742 | . . . . . 6 ⊢ (1st ‘𝑊) = 𝐹 |
| 3 | wlkcomp.2 | . . . . . . 7 ⊢ 𝑃 = (2nd ‘𝑊) | |
| 4 | 3 | eqcomi 2742 | . . . . . 6 ⊢ (2nd ‘𝑊) = 𝑃 |
| 5 | 2, 4 | pm3.2i 470 | . . . . 5 ⊢ ((1st ‘𝑊) = 𝐹 ∧ (2nd ‘𝑊) = 𝑃) |
| 6 | eqop 7972 | . . . . 5 ⊢ (𝑊 ∈ (𝑆 × 𝑇) → (𝑊 = 〈𝐹, 𝑃〉 ↔ ((1st ‘𝑊) = 𝐹 ∧ (2nd ‘𝑊) = 𝑃))) | |
| 7 | 5, 6 | mpbiri 258 | . . . 4 ⊢ (𝑊 ∈ (𝑆 × 𝑇) → 𝑊 = 〈𝐹, 𝑃〉) |
| 8 | 7 | eleq1d 2818 | . . 3 ⊢ (𝑊 ∈ (𝑆 × 𝑇) → (𝑊 ∈ (Walks‘𝐺) ↔ 〈𝐹, 𝑃〉 ∈ (Walks‘𝐺))) |
| 9 | df-br 5096 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ (Walks‘𝐺)) | |
| 10 | 8, 9 | bitr4di 289 | . 2 ⊢ (𝑊 ∈ (𝑆 × 𝑇) → (𝑊 ∈ (Walks‘𝐺) ↔ 𝐹(Walks‘𝐺)𝑃)) |
| 11 | wlkcomp.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 12 | wlkcomp.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 13 | 11, 12 | iswlkg 29603 | . 2 ⊢ (𝐺 ∈ 𝑈 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| 14 | 10, 13 | sylan9bbr 510 | 1 ⊢ ((𝐺 ∈ 𝑈 ∧ 𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (Walks‘𝐺) ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 if-wif 1062 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ⊆ wss 3899 {csn 4577 {cpr 4579 〈cop 4583 class class class wbr 5095 × cxp 5619 dom cdm 5621 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 1st c1st 7928 2nd c2nd 7929 0cc0 11016 1c1 11017 + caddc 11019 ...cfz 13417 ..^cfzo 13564 ♯chash 14247 Word cword 14430 Vtxcvtx 28985 iEdgciedg 28986 Walkscwlks 29586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-pm 8762 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-fzo 13565 df-hash 14248 df-word 14431 df-wlks 29589 |
| This theorem is referenced by: wlkcompim 29621 |
| Copyright terms: Public domain | W3C validator |