MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkcomp Structured version   Visualization version   GIF version

Theorem wlkcomp 29620
Description: A walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.)
Hypotheses
Ref Expression
wlkcomp.v 𝑉 = (Vtx‘𝐺)
wlkcomp.i 𝐼 = (iEdg‘𝐺)
wlkcomp.1 𝐹 = (1st𝑊)
wlkcomp.2 𝑃 = (2nd𝑊)
Assertion
Ref Expression
wlkcomp ((𝐺𝑈𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (Walks‘𝐺) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘
Allowed substitution hints:   𝑆(𝑘)   𝑇(𝑘)   𝑈(𝑘)   𝐼(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem wlkcomp
StepHypRef Expression
1 wlkcomp.1 . . . . . . 7 𝐹 = (1st𝑊)
21eqcomi 2742 . . . . . 6 (1st𝑊) = 𝐹
3 wlkcomp.2 . . . . . . 7 𝑃 = (2nd𝑊)
43eqcomi 2742 . . . . . 6 (2nd𝑊) = 𝑃
52, 4pm3.2i 470 . . . . 5 ((1st𝑊) = 𝐹 ∧ (2nd𝑊) = 𝑃)
6 eqop 7972 . . . . 5 (𝑊 ∈ (𝑆 × 𝑇) → (𝑊 = ⟨𝐹, 𝑃⟩ ↔ ((1st𝑊) = 𝐹 ∧ (2nd𝑊) = 𝑃)))
75, 6mpbiri 258 . . . 4 (𝑊 ∈ (𝑆 × 𝑇) → 𝑊 = ⟨𝐹, 𝑃⟩)
87eleq1d 2818 . . 3 (𝑊 ∈ (𝑆 × 𝑇) → (𝑊 ∈ (Walks‘𝐺) ↔ ⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺)))
9 df-br 5096 . . 3 (𝐹(Walks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺))
108, 9bitr4di 289 . 2 (𝑊 ∈ (𝑆 × 𝑇) → (𝑊 ∈ (Walks‘𝐺) ↔ 𝐹(Walks‘𝐺)𝑃))
11 wlkcomp.v . . 3 𝑉 = (Vtx‘𝐺)
12 wlkcomp.i . . 3 𝐼 = (iEdg‘𝐺)
1311, 12iswlkg 29603 . 2 (𝐺𝑈 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
1410, 13sylan9bbr 510 1 ((𝐺𝑈𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (Walks‘𝐺) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  if-wif 1062  w3a 1086   = wceq 1541  wcel 2113  wral 3049  wss 3899  {csn 4577  {cpr 4579  cop 4583   class class class wbr 5095   × cxp 5619  dom cdm 5621  wf 6485  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  0cc0 11016  1c1 11017   + caddc 11019  ...cfz 13417  ..^cfzo 13564  chash 14247  Word cword 14430  Vtxcvtx 28985  iEdgciedg 28986  Walkscwlks 29586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565  df-hash 14248  df-word 14431  df-wlks 29589
This theorem is referenced by:  wlkcompim  29621
  Copyright terms: Public domain W3C validator