![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlkcomp | Structured version Visualization version GIF version |
Description: A closed walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 17-Feb-2021.) |
Ref | Expression |
---|---|
isclwlke.v | β’ π = (VtxβπΊ) |
isclwlke.i | β’ πΌ = (iEdgβπΊ) |
clwlkcomp.1 | β’ πΉ = (1st βπ) |
clwlkcomp.2 | β’ π = (2nd βπ) |
Ref | Expression |
---|---|
clwlkcomp | β’ ((πΊ β π β§ π β (π Γ π)) β (π β (ClWalksβπΊ) β ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ) β§ (βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β§ (πβ0) = (πβ(β―βπΉ)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlkcomp.1 | . . . . . . 7 β’ πΉ = (1st βπ) | |
2 | 1 | eqcomi 2733 | . . . . . 6 β’ (1st βπ) = πΉ |
3 | clwlkcomp.2 | . . . . . . 7 β’ π = (2nd βπ) | |
4 | 3 | eqcomi 2733 | . . . . . 6 β’ (2nd βπ) = π |
5 | 2, 4 | pm3.2i 470 | . . . . 5 β’ ((1st βπ) = πΉ β§ (2nd βπ) = π) |
6 | eqop 8010 | . . . . 5 β’ (π β (π Γ π) β (π = β¨πΉ, πβ© β ((1st βπ) = πΉ β§ (2nd βπ) = π))) | |
7 | 5, 6 | mpbiri 258 | . . . 4 β’ (π β (π Γ π) β π = β¨πΉ, πβ©) |
8 | 7 | eleq1d 2810 | . . 3 β’ (π β (π Γ π) β (π β (ClWalksβπΊ) β β¨πΉ, πβ© β (ClWalksβπΊ))) |
9 | df-br 5139 | . . 3 β’ (πΉ(ClWalksβπΊ)π β β¨πΉ, πβ© β (ClWalksβπΊ)) | |
10 | 8, 9 | bitr4di 289 | . 2 β’ (π β (π Γ π) β (π β (ClWalksβπΊ) β πΉ(ClWalksβπΊ)π)) |
11 | isclwlke.v | . . 3 β’ π = (VtxβπΊ) | |
12 | isclwlke.i | . . 3 β’ πΌ = (iEdgβπΊ) | |
13 | 11, 12 | isclwlke 29469 | . 2 β’ (πΊ β π β (πΉ(ClWalksβπΊ)π β ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ) β§ (βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β§ (πβ0) = (πβ(β―βπΉ)))))) |
14 | 10, 13 | sylan9bbr 510 | 1 β’ ((πΊ β π β§ π β (π Γ π)) β (π β (ClWalksβπΊ) β ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ) β§ (βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β§ (πβ0) = (πβ(β―βπΉ)))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 if-wif 1059 = wceq 1533 β wcel 2098 βwral 3053 β wss 3940 {csn 4620 {cpr 4622 β¨cop 4626 class class class wbr 5138 Γ cxp 5664 dom cdm 5666 βΆwf 6529 βcfv 6533 (class class class)co 7401 1st c1st 7966 2nd c2nd 7967 0cc0 11105 1c1 11106 + caddc 11108 ...cfz 13480 ..^cfzo 13623 β―chash 14286 Word cword 14460 Vtxcvtx 28691 iEdgciedg 28692 ClWalkscclwlks 29462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1060 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-pm 8818 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-wlks 29291 df-clwlks 29463 |
This theorem is referenced by: clwlkcompim 29472 |
Copyright terms: Public domain | W3C validator |