| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwlkcomp | Structured version Visualization version GIF version | ||
| Description: A closed walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 17-Feb-2021.) |
| Ref | Expression |
|---|---|
| isclwlke.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isclwlke.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| clwlkcomp.1 | ⊢ 𝐹 = (1st ‘𝑊) |
| clwlkcomp.2 | ⊢ 𝑃 = (2nd ‘𝑊) |
| Ref | Expression |
|---|---|
| clwlkcomp | ⊢ ((𝐺 ∈ 𝑋 ∧ 𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkcomp.1 | . . . . . . 7 ⊢ 𝐹 = (1st ‘𝑊) | |
| 2 | 1 | eqcomi 2738 | . . . . . 6 ⊢ (1st ‘𝑊) = 𝐹 |
| 3 | clwlkcomp.2 | . . . . . . 7 ⊢ 𝑃 = (2nd ‘𝑊) | |
| 4 | 3 | eqcomi 2738 | . . . . . 6 ⊢ (2nd ‘𝑊) = 𝑃 |
| 5 | 2, 4 | pm3.2i 470 | . . . . 5 ⊢ ((1st ‘𝑊) = 𝐹 ∧ (2nd ‘𝑊) = 𝑃) |
| 6 | eqop 8010 | . . . . 5 ⊢ (𝑊 ∈ (𝑆 × 𝑇) → (𝑊 = 〈𝐹, 𝑃〉 ↔ ((1st ‘𝑊) = 𝐹 ∧ (2nd ‘𝑊) = 𝑃))) | |
| 7 | 5, 6 | mpbiri 258 | . . . 4 ⊢ (𝑊 ∈ (𝑆 × 𝑇) → 𝑊 = 〈𝐹, 𝑃〉) |
| 8 | 7 | eleq1d 2813 | . . 3 ⊢ (𝑊 ∈ (𝑆 × 𝑇) → (𝑊 ∈ (ClWalks‘𝐺) ↔ 〈𝐹, 𝑃〉 ∈ (ClWalks‘𝐺))) |
| 9 | df-br 5108 | . . 3 ⊢ (𝐹(ClWalks‘𝐺)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ (ClWalks‘𝐺)) | |
| 10 | 8, 9 | bitr4di 289 | . 2 ⊢ (𝑊 ∈ (𝑆 × 𝑇) → (𝑊 ∈ (ClWalks‘𝐺) ↔ 𝐹(ClWalks‘𝐺)𝑃)) |
| 11 | isclwlke.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 12 | isclwlke.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 13 | 11, 12 | isclwlke 29707 | . 2 ⊢ (𝐺 ∈ 𝑋 → (𝐹(ClWalks‘𝐺)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))) |
| 14 | 10, 13 | sylan9bbr 510 | 1 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 if-wif 1062 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 {csn 4589 {cpr 4591 〈cop 4595 class class class wbr 5107 × cxp 5636 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 0cc0 11068 1c1 11069 + caddc 11071 ...cfz 13468 ..^cfzo 13615 ♯chash 14295 Word cword 14478 Vtxcvtx 28923 iEdgciedg 28924 ClWalkscclwlks 29700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-wlks 29527 df-clwlks 29701 |
| This theorem is referenced by: clwlkcompim 29710 |
| Copyright terms: Public domain | W3C validator |