| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1omvdcnv | Structured version Visualization version GIF version | ||
| Description: A permutation and its inverse move the same points. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| f1omvdcnv | ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnvfvb 7257 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑥 ↔ (◡𝐹‘𝑥) = 𝑥)) | |
| 2 | 1 | 3anidm23 1423 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑥 ↔ (◡𝐹‘𝑥) = 𝑥)) |
| 3 | 2 | bicomd 223 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑥) = 𝑥)) |
| 4 | 3 | necon3bid 2970 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) ≠ 𝑥)) |
| 5 | 4 | rabbidva 3415 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → {𝑥 ∈ 𝐴 ∣ (◡𝐹‘𝑥) ≠ 𝑥} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
| 6 | f1ocnv 6815 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐴) | |
| 7 | f1ofn 6804 | . . 3 ⊢ (◡𝐹:𝐴–1-1-onto→𝐴 → ◡𝐹 Fn 𝐴) | |
| 8 | fndifnfp 7153 | . . 3 ⊢ (◡𝐹 Fn 𝐴 → dom (◡𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (◡𝐹‘𝑥) ≠ 𝑥}) | |
| 9 | 6, 7, 8 | 3syl 18 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (◡𝐹‘𝑥) ≠ 𝑥}) |
| 10 | f1ofn 6804 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹 Fn 𝐴) | |
| 11 | fndifnfp 7153 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | |
| 12 | 10, 11 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
| 13 | 5, 9, 12 | 3eqtr4d 2775 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 ∖ cdif 3914 I cid 5535 ◡ccnv 5640 dom cdm 5641 Fn wfn 6509 –1-1-onto→wf1o 6513 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 |
| This theorem is referenced by: f1omvdco2 19385 symgsssg 19404 symgfisg 19405 |
| Copyright terms: Public domain | W3C validator |