![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1omvdcnv | Structured version Visualization version GIF version |
Description: A permutation and its inverse move the same points. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
f1omvdcnv | ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnvfvb 7273 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑥 ↔ (◡𝐹‘𝑥) = 𝑥)) | |
2 | 1 | 3anidm23 1421 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑥 ↔ (◡𝐹‘𝑥) = 𝑥)) |
3 | 2 | bicomd 222 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑥) = 𝑥)) |
4 | 3 | necon3bid 2985 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) ≠ 𝑥)) |
5 | 4 | rabbidva 3439 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → {𝑥 ∈ 𝐴 ∣ (◡𝐹‘𝑥) ≠ 𝑥} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
6 | f1ocnv 6842 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐴) | |
7 | f1ofn 6831 | . . 3 ⊢ (◡𝐹:𝐴–1-1-onto→𝐴 → ◡𝐹 Fn 𝐴) | |
8 | fndifnfp 7170 | . . 3 ⊢ (◡𝐹 Fn 𝐴 → dom (◡𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (◡𝐹‘𝑥) ≠ 𝑥}) | |
9 | 6, 7, 8 | 3syl 18 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (◡𝐹‘𝑥) ≠ 𝑥}) |
10 | f1ofn 6831 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹 Fn 𝐴) | |
11 | fndifnfp 7170 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | |
12 | 10, 11 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
13 | 5, 9, 12 | 3eqtr4d 2782 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 {crab 3432 ∖ cdif 3944 I cid 5572 ◡ccnv 5674 dom cdm 5675 Fn wfn 6535 –1-1-onto→wf1o 6539 ‘cfv 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 |
This theorem is referenced by: f1omvdco2 19310 symgsssg 19329 symgfisg 19330 |
Copyright terms: Public domain | W3C validator |