MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdcnv Structured version   Visualization version   GIF version

Theorem f1omvdcnv 19486
Description: A permutation and its inverse move the same points. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1omvdcnv (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ))

Proof of Theorem f1omvdcnv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 f1ocnvfvb 7315 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑥𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑥) = 𝑥))
213anidm23 1421 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑥) = 𝑥))
32bicomd 223 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑥) = 𝑥))
43necon3bid 2991 . . 3 ((𝐹:𝐴1-1-onto𝐴𝑥𝐴) → ((𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) ≠ 𝑥))
54rabbidva 3450 . 2 (𝐹:𝐴1-1-onto𝐴 → {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
6 f1ocnv 6874 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴1-1-onto𝐴)
7 f1ofn 6863 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
8 fndifnfp 7210 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
96, 7, 83syl 18 . 2 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
10 f1ofn 6863 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
11 fndifnfp 7210 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
1210, 11syl 17 . 2 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
135, 9, 123eqtr4d 2790 1 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  {crab 3443  cdif 3973   I cid 5592  ccnv 5699  dom cdm 5700   Fn wfn 6568  1-1-ontowf1o 6572  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  f1omvdco2  19490  symgsssg  19509  symgfisg  19510
  Copyright terms: Public domain W3C validator