![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1omvdcnv | Structured version Visualization version GIF version |
Description: A permutation and its inverse move the same points. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
f1omvdcnv | ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnvfvb 7280 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑥 ↔ (◡𝐹‘𝑥) = 𝑥)) | |
2 | 1 | 3anidm23 1420 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑥 ↔ (◡𝐹‘𝑥) = 𝑥)) |
3 | 2 | bicomd 222 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑥) = 𝑥)) |
4 | 3 | necon3bid 2984 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) ≠ 𝑥)) |
5 | 4 | rabbidva 3438 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → {𝑥 ∈ 𝐴 ∣ (◡𝐹‘𝑥) ≠ 𝑥} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
6 | f1ocnv 6845 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐴) | |
7 | f1ofn 6834 | . . 3 ⊢ (◡𝐹:𝐴–1-1-onto→𝐴 → ◡𝐹 Fn 𝐴) | |
8 | fndifnfp 7176 | . . 3 ⊢ (◡𝐹 Fn 𝐴 → dom (◡𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (◡𝐹‘𝑥) ≠ 𝑥}) | |
9 | 6, 7, 8 | 3syl 18 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (◡𝐹‘𝑥) ≠ 𝑥}) |
10 | f1ofn 6834 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹 Fn 𝐴) | |
11 | fndifnfp 7176 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | |
12 | 10, 11 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
13 | 5, 9, 12 | 3eqtr4d 2781 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 {crab 3431 ∖ cdif 3945 I cid 5573 ◡ccnv 5675 dom cdm 5676 Fn wfn 6538 –1-1-onto→wf1o 6542 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 |
This theorem is referenced by: f1omvdco2 19364 symgsssg 19383 symgfisg 19384 |
Copyright terms: Public domain | W3C validator |