| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1omvdcnv | Structured version Visualization version GIF version | ||
| Description: A permutation and its inverse move the same points. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| f1omvdcnv | ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnvfvb 7213 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑥 ↔ (◡𝐹‘𝑥) = 𝑥)) | |
| 2 | 1 | 3anidm23 1423 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑥 ↔ (◡𝐹‘𝑥) = 𝑥)) |
| 3 | 2 | bicomd 223 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝑥) = 𝑥 ↔ (𝐹‘𝑥) = 𝑥)) |
| 4 | 3 | necon3bid 2972 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝑥) ≠ 𝑥 ↔ (𝐹‘𝑥) ≠ 𝑥)) |
| 5 | 4 | rabbidva 3401 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → {𝑥 ∈ 𝐴 ∣ (◡𝐹‘𝑥) ≠ 𝑥} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
| 6 | f1ocnv 6775 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐴) | |
| 7 | f1ofn 6764 | . . 3 ⊢ (◡𝐹:𝐴–1-1-onto→𝐴 → ◡𝐹 Fn 𝐴) | |
| 8 | fndifnfp 7110 | . . 3 ⊢ (◡𝐹 Fn 𝐴 → dom (◡𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (◡𝐹‘𝑥) ≠ 𝑥}) | |
| 9 | 6, 7, 8 | 3syl 18 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (◡𝐹‘𝑥) ≠ 𝑥}) |
| 10 | f1ofn 6764 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹 Fn 𝐴) | |
| 11 | fndifnfp 7110 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) | |
| 12 | 10, 11 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (𝐹 ∖ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ 𝑥}) |
| 13 | 5, 9, 12 | 3eqtr4d 2776 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → dom (◡𝐹 ∖ I ) = dom (𝐹 ∖ I )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ∖ cdif 3894 I cid 5508 ◡ccnv 5613 dom cdm 5614 Fn wfn 6476 –1-1-onto→wf1o 6480 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: f1omvdco2 19360 symgsssg 19379 symgfisg 19380 |
| Copyright terms: Public domain | W3C validator |