MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdcnv Structured version   Visualization version   GIF version

Theorem f1omvdcnv 19360
Description: A permutation and its inverse move the same points. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
f1omvdcnv (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ))

Proof of Theorem f1omvdcnv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 f1ocnvfvb 7280 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑥𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑥) = 𝑥))
213anidm23 1420 . . . . 5 ((𝐹:𝐴1-1-onto𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑥) = 𝑥))
32bicomd 222 . . . 4 ((𝐹:𝐴1-1-onto𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑥 ↔ (𝐹𝑥) = 𝑥))
43necon3bid 2984 . . 3 ((𝐹:𝐴1-1-onto𝐴𝑥𝐴) → ((𝐹𝑥) ≠ 𝑥 ↔ (𝐹𝑥) ≠ 𝑥))
54rabbidva 3438 . 2 (𝐹:𝐴1-1-onto𝐴 → {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥} = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
6 f1ocnv 6845 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴1-1-onto𝐴)
7 f1ofn 6834 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
8 fndifnfp 7176 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
96, 7, 83syl 18 . 2 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
10 f1ofn 6834 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹 Fn 𝐴)
11 fndifnfp 7176 . . 3 (𝐹 Fn 𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
1210, 11syl 17 . 2 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ 𝑥})
135, 9, 123eqtr4d 2781 1 (𝐹:𝐴1-1-onto𝐴 → dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wne 2939  {crab 3431  cdif 3945   I cid 5573  ccnv 5675  dom cdm 5676   Fn wfn 6538  1-1-ontowf1o 6542  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551
This theorem is referenced by:  f1omvdco2  19364  symgsssg  19383  symgfisg  19384
  Copyright terms: Public domain W3C validator