MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1o2d Structured version   Visualization version   GIF version

Theorem f1o2d 7659
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
f1od.1 𝐹 = (𝑥𝐴𝐶)
f1o2d.2 ((𝜑𝑥𝐴) → 𝐶𝐵)
f1o2d.3 ((𝜑𝑦𝐵) → 𝐷𝐴)
f1o2d.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
Assertion
Ref Expression
f1o2d (𝜑𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem f1o2d
StepHypRef Expression
1 f1od.1 . . 3 𝐹 = (𝑥𝐴𝐶)
2 f1o2d.2 . . 3 ((𝜑𝑥𝐴) → 𝐶𝐵)
3 f1o2d.3 . . 3 ((𝜑𝑦𝐵) → 𝐷𝐴)
4 f1o2d.4 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
51, 2, 3, 4f1ocnv2d 7658 . 2 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
65simpld 495 1 (𝜑𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cmpt 5231  ccnv 5675  1-1-ontowf1o 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550
This theorem is referenced by:  f1opw2  7660  en3d  8984  f1opwfi  9355  mapfien  9402  djulf1o  9906  djurf1o  9907  fin23lem22  10321  negf1o  11643  incexclem  15781  dvdsflip  16259  hashgcdlem  16720  grplmulf1o  18896  conjghm  19122  gapm  19169  sylow2a  19486  lsmhash  19572  psrbagconf1o  21488  psrbagconf1oOLD  21489  hmeoimaf1o  23273  itg1mulc  25221  resinf1o  26044  eff1olem  26056  sqff1o  26683  dvdsppwf1o  26687  dvdsflf1o  26688  fcobij  31942  mgcf1o  32168  subfacp1lem3  34168  subfacp1lem5  34170  metakunt15  40994  metakunt16  40995  f1o2d2  41057  frlmsnic  41112
  Copyright terms: Public domain W3C validator