MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1o2d Structured version   Visualization version   GIF version

Theorem f1o2d 7121
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
f1od.1 𝐹 = (𝑥𝐴𝐶)
f1o2d.2 ((𝜑𝑥𝐴) → 𝐶𝐵)
f1o2d.3 ((𝜑𝑦𝐵) → 𝐷𝐴)
f1o2d.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
Assertion
Ref Expression
f1o2d (𝜑𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem f1o2d
StepHypRef Expression
1 f1od.1 . . 3 𝐹 = (𝑥𝐴𝐶)
2 f1o2d.2 . . 3 ((𝜑𝑥𝐴) → 𝐶𝐵)
3 f1o2d.3 . . 3 ((𝜑𝑦𝐵) → 𝐷𝐴)
4 f1o2d.4 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
51, 2, 3, 4f1ocnv2d 7120 . 2 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
65simpld 489 1 (𝜑𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  cmpt 4922  ccnv 5311  1-1-ontowf1o 6100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108
This theorem is referenced by:  f1opw2  7122  en3d  8232  f1opwfi  8512  mapfien  8555  djulf1o  9024  djurf1o  9025  fin23lem22  9437  incexclem  14906  dvdsflip  15378  hashgcdlem  15826  grplmulf1o  17805  conjghm  18004  gapm  18051  psrbagconf1o  19697  hmeoimaf1o  21902  itg1mulc  23812  resinf1o  24624  eff1olem  24636  sqff1o  25260  dvdsppwf1o  25264  dvdsflf1o  25265  fcobij  30018
  Copyright terms: Public domain W3C validator