Step | Hyp | Ref
| Expression |
1 | | bren 8726 |
. 2
⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑔 𝑔:𝐴–1-1-onto→𝐵) |
2 | | bren 8726 |
. 2
⊢ (𝐶 ≈ 𝐷 ↔ ∃ℎ ℎ:𝐶–1-1-onto→𝐷) |
3 | | exdistrv 1963 |
. . 3
⊢
(∃𝑔∃ℎ(𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ↔ (∃𝑔 𝑔:𝐴–1-1-onto→𝐵 ∧ ∃ℎ ℎ:𝐶–1-1-onto→𝐷)) |
4 | | f1osetex 8630 |
. . . . . 6
⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ∈ V |
5 | 4 | a1i 11 |
. . . . 5
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ∈ V) |
6 | | f1osetex 8630 |
. . . . . 6
⊢ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷} ∈ V |
7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷} ∈ V) |
8 | | f1oco 6736 |
. . . . . . . . 9
⊢ ((ℎ:𝐶–1-1-onto→𝐷 ∧ 𝑥:𝐴–1-1-onto→𝐶) → (ℎ ∘ 𝑥):𝐴–1-1-onto→𝐷) |
9 | 8 | adantll 711 |
. . . . . . . 8
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ 𝑥:𝐴–1-1-onto→𝐶) → (ℎ ∘ 𝑥):𝐴–1-1-onto→𝐷) |
10 | | f1ocnv 6726 |
. . . . . . . . 9
⊢ (𝑔:𝐴–1-1-onto→𝐵 → ◡𝑔:𝐵–1-1-onto→𝐴) |
11 | 10 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ 𝑥:𝐴–1-1-onto→𝐶) → ◡𝑔:𝐵–1-1-onto→𝐴) |
12 | | f1oco 6736 |
. . . . . . . 8
⊢ (((ℎ ∘ 𝑥):𝐴–1-1-onto→𝐷 ∧ ◡𝑔:𝐵–1-1-onto→𝐴) → ((ℎ ∘ 𝑥) ∘ ◡𝑔):𝐵–1-1-onto→𝐷) |
13 | 9, 11, 12 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ 𝑥:𝐴–1-1-onto→𝐶) → ((ℎ ∘ 𝑥) ∘ ◡𝑔):𝐵–1-1-onto→𝐷) |
14 | 13 | ex 413 |
. . . . . 6
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → (𝑥:𝐴–1-1-onto→𝐶 → ((ℎ ∘ 𝑥) ∘ ◡𝑔):𝐵–1-1-onto→𝐷)) |
15 | | vex 3435 |
. . . . . . 7
⊢ 𝑥 ∈ V |
16 | | f1oeq1 6702 |
. . . . . . 7
⊢ (𝑓 = 𝑥 → (𝑓:𝐴–1-1-onto→𝐶 ↔ 𝑥:𝐴–1-1-onto→𝐶)) |
17 | 15, 16 | elab 3611 |
. . . . . 6
⊢ (𝑥 ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ↔ 𝑥:𝐴–1-1-onto→𝐶) |
18 | | vex 3435 |
. . . . . . . . 9
⊢ ℎ ∈ V |
19 | 18, 15 | coex 7771 |
. . . . . . . 8
⊢ (ℎ ∘ 𝑥) ∈ V |
20 | | vex 3435 |
. . . . . . . . 9
⊢ 𝑔 ∈ V |
21 | 20 | cnvex 7766 |
. . . . . . . 8
⊢ ◡𝑔 ∈ V |
22 | 19, 21 | coex 7771 |
. . . . . . 7
⊢ ((ℎ ∘ 𝑥) ∘ ◡𝑔) ∈ V |
23 | | f1oeq1 6702 |
. . . . . . 7
⊢ (𝑓 = ((ℎ ∘ 𝑥) ∘ ◡𝑔) → (𝑓:𝐵–1-1-onto→𝐷 ↔ ((ℎ ∘ 𝑥) ∘ ◡𝑔):𝐵–1-1-onto→𝐷)) |
24 | 22, 23 | elab 3611 |
. . . . . 6
⊢ (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷} ↔ ((ℎ ∘ 𝑥) ∘ ◡𝑔):𝐵–1-1-onto→𝐷) |
25 | 14, 17, 24 | 3imtr4g 296 |
. . . . 5
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → (𝑥 ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} → ((ℎ ∘ 𝑥) ∘ ◡𝑔) ∈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷})) |
26 | | f1ocnv 6726 |
. . . . . . . . 9
⊢ (ℎ:𝐶–1-1-onto→𝐷 → ◡ℎ:𝐷–1-1-onto→𝐶) |
27 | 26 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ 𝑦:𝐵–1-1-onto→𝐷) → ◡ℎ:𝐷–1-1-onto→𝐶) |
28 | | f1oco 6736 |
. . . . . . . . . 10
⊢ ((𝑦:𝐵–1-1-onto→𝐷 ∧ 𝑔:𝐴–1-1-onto→𝐵) → (𝑦 ∘ 𝑔):𝐴–1-1-onto→𝐷) |
29 | 28 | ancoms 459 |
. . . . . . . . 9
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ 𝑦:𝐵–1-1-onto→𝐷) → (𝑦 ∘ 𝑔):𝐴–1-1-onto→𝐷) |
30 | 29 | adantlr 712 |
. . . . . . . 8
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ 𝑦:𝐵–1-1-onto→𝐷) → (𝑦 ∘ 𝑔):𝐴–1-1-onto→𝐷) |
31 | | f1oco 6736 |
. . . . . . . 8
⊢ ((◡ℎ:𝐷–1-1-onto→𝐶 ∧ (𝑦 ∘ 𝑔):𝐴–1-1-onto→𝐷) → (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴–1-1-onto→𝐶) |
32 | 27, 30, 31 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ 𝑦:𝐵–1-1-onto→𝐷) → (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴–1-1-onto→𝐶) |
33 | 32 | ex 413 |
. . . . . 6
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → (𝑦:𝐵–1-1-onto→𝐷 → (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴–1-1-onto→𝐶)) |
34 | | vex 3435 |
. . . . . . 7
⊢ 𝑦 ∈ V |
35 | | f1oeq1 6702 |
. . . . . . 7
⊢ (𝑓 = 𝑦 → (𝑓:𝐵–1-1-onto→𝐷 ↔ 𝑦:𝐵–1-1-onto→𝐷)) |
36 | 34, 35 | elab 3611 |
. . . . . 6
⊢ (𝑦 ∈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷} ↔ 𝑦:𝐵–1-1-onto→𝐷) |
37 | 18 | cnvex 7766 |
. . . . . . . 8
⊢ ◡ℎ ∈ V |
38 | 34, 20 | coex 7771 |
. . . . . . . 8
⊢ (𝑦 ∘ 𝑔) ∈ V |
39 | 37, 38 | coex 7771 |
. . . . . . 7
⊢ (◡ℎ ∘ (𝑦 ∘ 𝑔)) ∈ V |
40 | | f1oeq1 6702 |
. . . . . . 7
⊢ (𝑓 = (◡ℎ ∘ (𝑦 ∘ 𝑔)) → (𝑓:𝐴–1-1-onto→𝐶 ↔ (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴–1-1-onto→𝐶)) |
41 | 39, 40 | elab 3611 |
. . . . . 6
⊢ ((◡ℎ ∘ (𝑦 ∘ 𝑔)) ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ↔ (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴–1-1-onto→𝐶) |
42 | 33, 36, 41 | 3imtr4g 296 |
. . . . 5
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → (𝑦 ∈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷} → (◡ℎ ∘ (𝑦 ∘ 𝑔)) ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶})) |
43 | 17, 36 | anbi12i 627 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ∧ 𝑦 ∈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) ↔ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) |
44 | | coass 6168 |
. . . . . . . . . . 11
⊢ (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) = ((ℎ ∘ 𝑥) ∘ (◡𝑔 ∘ 𝑔)) |
45 | | f1ococnv1 6742 |
. . . . . . . . . . . . . 14
⊢ (𝑔:𝐴–1-1-onto→𝐵 → (◡𝑔 ∘ 𝑔) = ( I ↾ 𝐴)) |
46 | 45 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (◡𝑔 ∘ 𝑔) = ( I ↾ 𝐴)) |
47 | 46 | coeq2d 5770 |
. . . . . . . . . . . 12
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) ∘ (◡𝑔 ∘ 𝑔)) = ((ℎ ∘ 𝑥) ∘ ( I ↾ 𝐴))) |
48 | 9 | adantrr 714 |
. . . . . . . . . . . . 13
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (ℎ ∘ 𝑥):𝐴–1-1-onto→𝐷) |
49 | | f1of 6714 |
. . . . . . . . . . . . 13
⊢ ((ℎ ∘ 𝑥):𝐴–1-1-onto→𝐷 → (ℎ ∘ 𝑥):𝐴⟶𝐷) |
50 | | fcoi1 6646 |
. . . . . . . . . . . . 13
⊢ ((ℎ ∘ 𝑥):𝐴⟶𝐷 → ((ℎ ∘ 𝑥) ∘ ( I ↾ 𝐴)) = (ℎ ∘ 𝑥)) |
51 | 48, 49, 50 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) ∘ ( I ↾ 𝐴)) = (ℎ ∘ 𝑥)) |
52 | 47, 51 | eqtrd 2780 |
. . . . . . . . . . 11
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) ∘ (◡𝑔 ∘ 𝑔)) = (ℎ ∘ 𝑥)) |
53 | 44, 52 | eqtr2id 2793 |
. . . . . . . . . 10
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (ℎ ∘ 𝑥) = (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔)) |
54 | | coass 6168 |
. . . . . . . . . . 11
⊢ ((ℎ ∘ ◡ℎ) ∘ (𝑦 ∘ 𝑔)) = (ℎ ∘ (◡ℎ ∘ (𝑦 ∘ 𝑔))) |
55 | | f1ococnv2 6740 |
. . . . . . . . . . . . . 14
⊢ (ℎ:𝐶–1-1-onto→𝐷 → (ℎ ∘ ◡ℎ) = ( I ↾ 𝐷)) |
56 | 55 | ad2antlr 724 |
. . . . . . . . . . . . 13
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (ℎ ∘ ◡ℎ) = ( I ↾ 𝐷)) |
57 | 56 | coeq1d 5769 |
. . . . . . . . . . . 12
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ ◡ℎ) ∘ (𝑦 ∘ 𝑔)) = (( I ↾ 𝐷) ∘ (𝑦 ∘ 𝑔))) |
58 | 30 | adantrl 713 |
. . . . . . . . . . . . 13
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (𝑦 ∘ 𝑔):𝐴–1-1-onto→𝐷) |
59 | | f1of 6714 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∘ 𝑔):𝐴–1-1-onto→𝐷 → (𝑦 ∘ 𝑔):𝐴⟶𝐷) |
60 | | fcoi2 6647 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∘ 𝑔):𝐴⟶𝐷 → (( I ↾ 𝐷) ∘ (𝑦 ∘ 𝑔)) = (𝑦 ∘ 𝑔)) |
61 | 58, 59, 60 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (( I ↾ 𝐷) ∘ (𝑦 ∘ 𝑔)) = (𝑦 ∘ 𝑔)) |
62 | 57, 61 | eqtrd 2780 |
. . . . . . . . . . 11
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ ◡ℎ) ∘ (𝑦 ∘ 𝑔)) = (𝑦 ∘ 𝑔)) |
63 | 54, 62 | eqtr3id 2794 |
. . . . . . . . . 10
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (ℎ ∘ (◡ℎ ∘ (𝑦 ∘ 𝑔))) = (𝑦 ∘ 𝑔)) |
64 | 53, 63 | eqeq12d 2756 |
. . . . . . . . 9
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) = (ℎ ∘ (◡ℎ ∘ (𝑦 ∘ 𝑔))) ↔ (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) = (𝑦 ∘ 𝑔))) |
65 | | eqcom 2747 |
. . . . . . . . 9
⊢ ((((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) = (𝑦 ∘ 𝑔) ↔ (𝑦 ∘ 𝑔) = (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔)) |
66 | 64, 65 | bitrdi 287 |
. . . . . . . 8
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) = (ℎ ∘ (◡ℎ ∘ (𝑦 ∘ 𝑔))) ↔ (𝑦 ∘ 𝑔) = (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔))) |
67 | | f1of1 6713 |
. . . . . . . . . 10
⊢ (ℎ:𝐶–1-1-onto→𝐷 → ℎ:𝐶–1-1→𝐷) |
68 | 67 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ℎ:𝐶–1-1→𝐷) |
69 | | f1of 6714 |
. . . . . . . . . 10
⊢ (𝑥:𝐴–1-1-onto→𝐶 → 𝑥:𝐴⟶𝐶) |
70 | 69 | ad2antrl 725 |
. . . . . . . . 9
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → 𝑥:𝐴⟶𝐶) |
71 | 32 | adantrl 713 |
. . . . . . . . . 10
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴–1-1-onto→𝐶) |
72 | | f1of 6714 |
. . . . . . . . . 10
⊢ ((◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴–1-1-onto→𝐶 → (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴⟶𝐶) |
73 | 71, 72 | syl 17 |
. . . . . . . . 9
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴⟶𝐶) |
74 | | cocan1 7159 |
. . . . . . . . 9
⊢ ((ℎ:𝐶–1-1→𝐷 ∧ 𝑥:𝐴⟶𝐶 ∧ (◡ℎ ∘ (𝑦 ∘ 𝑔)):𝐴⟶𝐶) → ((ℎ ∘ 𝑥) = (ℎ ∘ (◡ℎ ∘ (𝑦 ∘ 𝑔))) ↔ 𝑥 = (◡ℎ ∘ (𝑦 ∘ 𝑔)))) |
75 | 68, 70, 73, 74 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) = (ℎ ∘ (◡ℎ ∘ (𝑦 ∘ 𝑔))) ↔ 𝑥 = (◡ℎ ∘ (𝑦 ∘ 𝑔)))) |
76 | | f1ofo 6721 |
. . . . . . . . . 10
⊢ (𝑔:𝐴–1-1-onto→𝐵 → 𝑔:𝐴–onto→𝐵) |
77 | 76 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → 𝑔:𝐴–onto→𝐵) |
78 | | f1ofn 6715 |
. . . . . . . . . 10
⊢ (𝑦:𝐵–1-1-onto→𝐷 → 𝑦 Fn 𝐵) |
79 | 78 | ad2antll 726 |
. . . . . . . . 9
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → 𝑦 Fn 𝐵) |
80 | 13 | adantrr 714 |
. . . . . . . . . 10
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) ∘ ◡𝑔):𝐵–1-1-onto→𝐷) |
81 | | f1ofn 6715 |
. . . . . . . . . 10
⊢ (((ℎ ∘ 𝑥) ∘ ◡𝑔):𝐵–1-1-onto→𝐷 → ((ℎ ∘ 𝑥) ∘ ◡𝑔) Fn 𝐵) |
82 | 80, 81 | syl 17 |
. . . . . . . . 9
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((ℎ ∘ 𝑥) ∘ ◡𝑔) Fn 𝐵) |
83 | | cocan2 7160 |
. . . . . . . . 9
⊢ ((𝑔:𝐴–onto→𝐵 ∧ 𝑦 Fn 𝐵 ∧ ((ℎ ∘ 𝑥) ∘ ◡𝑔) Fn 𝐵) → ((𝑦 ∘ 𝑔) = (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) ↔ 𝑦 = ((ℎ ∘ 𝑥) ∘ ◡𝑔))) |
84 | 77, 79, 82, 83 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → ((𝑦 ∘ 𝑔) = (((ℎ ∘ 𝑥) ∘ ◡𝑔) ∘ 𝑔) ↔ 𝑦 = ((ℎ ∘ 𝑥) ∘ ◡𝑔))) |
85 | 66, 75, 84 | 3bitr3d 309 |
. . . . . . 7
⊢ (((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) ∧ (𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷)) → (𝑥 = (◡ℎ ∘ (𝑦 ∘ 𝑔)) ↔ 𝑦 = ((ℎ ∘ 𝑥) ∘ ◡𝑔))) |
86 | 85 | ex 413 |
. . . . . 6
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → ((𝑥:𝐴–1-1-onto→𝐶 ∧ 𝑦:𝐵–1-1-onto→𝐷) → (𝑥 = (◡ℎ ∘ (𝑦 ∘ 𝑔)) ↔ 𝑦 = ((ℎ ∘ 𝑥) ∘ ◡𝑔)))) |
87 | 43, 86 | syl5bi 241 |
. . . . 5
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → ((𝑥 ∈ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ∧ 𝑦 ∈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) → (𝑥 = (◡ℎ ∘ (𝑦 ∘ 𝑔)) ↔ 𝑦 = ((ℎ ∘ 𝑥) ∘ ◡𝑔)))) |
88 | 5, 7, 25, 42, 87 | en3d 8760 |
. . . 4
⊢ ((𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) |
89 | 88 | exlimivv 1939 |
. . 3
⊢
(∃𝑔∃ℎ(𝑔:𝐴–1-1-onto→𝐵 ∧ ℎ:𝐶–1-1-onto→𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) |
90 | 3, 89 | sylbir 234 |
. 2
⊢
((∃𝑔 𝑔:𝐴–1-1-onto→𝐵 ∧ ∃ℎ ℎ:𝐶–1-1-onto→𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) |
91 | 1, 2, 90 | syl2anb 598 |
1
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) |