Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symgplusg | Structured version Visualization version GIF version |
Description: The group operation of a symmetric group is the function composition. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Proof shortened by AV, 19-Feb-2024.) (Revised by AV, 29-Mar-2024.) (Proof shortened by AV, 14-Aug-2024.) |
Ref | Expression |
---|---|
symgplusg.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgplusg.2 | ⊢ 𝐵 = (𝐴 ↑m 𝐴) |
symgplusg.3 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
symgplusg | ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgplusg.3 | . 2 ⊢ + = (+g‘𝐺) | |
2 | f1osetex 8723 | . . . 4 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ V | |
3 | eqid 2737 | . . . . 5 ⊢ ((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) = ((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) | |
4 | eqid 2737 | . . . . 5 ⊢ (+g‘(EndoFMnd‘𝐴)) = (+g‘(EndoFMnd‘𝐴)) | |
5 | 3, 4 | ressplusg 17098 | . . . 4 ⊢ ({𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ V → (+g‘(EndoFMnd‘𝐴)) = (+g‘((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}))) |
6 | 2, 5 | ax-mp 5 | . . 3 ⊢ (+g‘(EndoFMnd‘𝐴)) = (+g‘((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴})) |
7 | symgplusg.1 | . . . . . 6 ⊢ 𝐺 = (SymGrp‘𝐴) | |
8 | eqid 2737 | . . . . . 6 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} = {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} | |
9 | 7, 8 | symgval 19073 | . . . . 5 ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) |
10 | 9 | eqcomi 2746 | . . . 4 ⊢ ((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) = 𝐺 |
11 | 10 | fveq2i 6833 | . . 3 ⊢ (+g‘((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴})) = (+g‘𝐺) |
12 | 6, 11 | eqtri 2765 | . 2 ⊢ (+g‘(EndoFMnd‘𝐴)) = (+g‘𝐺) |
13 | eqid 2737 | . . 3 ⊢ (EndoFMnd‘𝐴) = (EndoFMnd‘𝐴) | |
14 | symgplusg.2 | . . . 4 ⊢ 𝐵 = (𝐴 ↑m 𝐴) | |
15 | eqid 2737 | . . . . 5 ⊢ (Base‘(EndoFMnd‘𝐴)) = (Base‘(EndoFMnd‘𝐴)) | |
16 | 13, 15 | efmndbas 18607 | . . . 4 ⊢ (Base‘(EndoFMnd‘𝐴)) = (𝐴 ↑m 𝐴) |
17 | 14, 16 | eqtr4i 2768 | . . 3 ⊢ 𝐵 = (Base‘(EndoFMnd‘𝐴)) |
18 | 13, 17, 4 | efmndplusg 18616 | . 2 ⊢ (+g‘(EndoFMnd‘𝐴)) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
19 | 1, 12, 18 | 3eqtr2i 2771 | 1 ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 {cab 2714 Vcvv 3442 ∘ ccom 5629 –1-1-onto→wf1o 6483 ‘cfv 6484 (class class class)co 7342 ∈ cmpo 7344 ↑m cmap 8691 Basecbs 17010 ↾s cress 17039 +gcplusg 17060 EndoFMndcefmnd 18604 SymGrpcsymg 19071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-7 12147 df-8 12148 df-9 12149 df-n0 12340 df-z 12426 df-uz 12689 df-fz 13346 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-tset 17079 df-efmnd 18605 df-symg 19072 |
This theorem is referenced by: symgov 19088 pgrpsubgsymg 19114 |
Copyright terms: Public domain | W3C validator |