![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgplusg | Structured version Visualization version GIF version |
Description: The group operation of a symmetric group is the function composition. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) |
Ref | Expression |
---|---|
symgplusg.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgplusg.2 | ⊢ 𝐵 = (Base‘𝐺) |
symgplusg.3 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
symgplusg | ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgplusg.1 | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | symgplusg.2 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | symgbas 18282 | . . . . 5 ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
4 | eqid 2773 | . . . . 5 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) | |
5 | eqid 2773 | . . . . 5 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴})) | |
6 | 1, 3, 4, 5 | symgval 18281 | . . . 4 ⊢ (𝐴 ∈ V → 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
7 | 6 | fveq2d 6501 | . . 3 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
8 | symgplusg.3 | . . 3 ⊢ + = (+g‘𝐺) | |
9 | 2 | fvexi 6511 | . . . . 5 ⊢ 𝐵 ∈ V |
10 | 9, 9 | mpoex 7584 | . . . 4 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ∈ V |
11 | eqid 2773 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} | |
12 | 11 | topgrpplusg 16518 | . . . 4 ⊢ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
13 | 10, 12 | ax-mp 5 | . . 3 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
14 | 7, 8, 13 | 3eqtr4g 2834 | . 2 ⊢ (𝐴 ∈ V → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))) |
15 | fvprc 6490 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (SymGrp‘𝐴) = ∅) | |
16 | 1, 15 | syl5eq 2821 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → 𝐺 = ∅) |
17 | 16 | fveq2d 6501 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (+g‘𝐺) = (+g‘∅)) |
18 | plusgid 16451 | . . . . 5 ⊢ +g = Slot (+g‘ndx) | |
19 | 18 | str0 16390 | . . . 4 ⊢ ∅ = (+g‘∅) |
20 | 17, 8, 19 | 3eqtr4g 2834 | . . 3 ⊢ (¬ 𝐴 ∈ V → + = ∅) |
21 | vex 3413 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
22 | vex 3413 | . . . . . . 7 ⊢ 𝑔 ∈ V | |
23 | 21, 22 | coex 7449 | . . . . . 6 ⊢ (𝑓 ∘ 𝑔) ∈ V |
24 | 4, 23 | fnmpoi 7575 | . . . . 5 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) Fn (𝐵 × 𝐵) |
25 | 16 | fveq2d 6501 | . . . . . . . . 9 ⊢ (¬ 𝐴 ∈ V → (Base‘𝐺) = (Base‘∅)) |
26 | base0 16391 | . . . . . . . . 9 ⊢ ∅ = (Base‘∅) | |
27 | 25, 2, 26 | 3eqtr4g 2834 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → 𝐵 = ∅) |
28 | 27 | xpeq2d 5434 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (𝐵 × 𝐵) = (𝐵 × ∅)) |
29 | xp0 5853 | . . . . . . 7 ⊢ (𝐵 × ∅) = ∅ | |
30 | 28, 29 | syl6eq 2825 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (𝐵 × 𝐵) = ∅) |
31 | 30 | fneq2d 6278 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) Fn (𝐵 × 𝐵) ↔ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) Fn ∅)) |
32 | 24, 31 | mpbii 225 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) Fn ∅) |
33 | fn0 6307 | . . . 4 ⊢ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) Fn ∅ ↔ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = ∅) | |
34 | 32, 33 | sylib 210 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = ∅) |
35 | 20, 34 | eqtr4d 2812 | . 2 ⊢ (¬ 𝐴 ∈ V → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))) |
36 | 14, 35 | pm2.61i 177 | 1 ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1508 ∈ wcel 2051 Vcvv 3410 ∅c0 4173 𝒫 cpw 4417 {csn 4436 {ctp 4440 〈cop 4442 × cxp 5402 ∘ ccom 5408 Fn wfn 6181 ‘cfv 6186 ∈ cmpo 6977 ndxcnx 16335 Basecbs 16338 +gcplusg 16420 TopSetcts 16426 ∏tcpt 16567 SymGrpcsymg 18279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-oadd 7908 df-er 8088 df-map 8207 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-nn 11439 df-2 11502 df-3 11503 df-4 11504 df-5 11505 df-6 11506 df-7 11507 df-8 11508 df-9 11509 df-n0 11707 df-z 11793 df-uz 12058 df-fz 12708 df-struct 16340 df-ndx 16341 df-slot 16342 df-base 16344 df-plusg 16433 df-tset 16439 df-symg 18280 |
This theorem is referenced by: symgov 18292 symgtset 18301 pgrpsubgsymg 18310 symgtgp 22429 |
Copyright terms: Public domain | W3C validator |