MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbelss Structured version   Visualization version   GIF version

Theorem fbelss 22433
Description: An element of the filter base is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbelss ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑋𝐹) → 𝑋𝐵)

Proof of Theorem fbelss
StepHypRef Expression
1 fbsspw 22432 . . 3 (𝐹 ∈ (fBas‘𝐵) → 𝐹 ⊆ 𝒫 𝐵)
21sselda 3965 . 2 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑋𝐹) → 𝑋 ∈ 𝒫 𝐵)
32elpwid 4551 1 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑋𝐹) → 𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2108  wss 3934  𝒫 cpw 4537  cfv 6348  fBascfbas 20525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fv 6356  df-fbas 20534
This theorem is referenced by:  fbdmn0  22434  filelss  22452  ssfg  22472  fgcl  22478  fbasrn  22484  fmfnfmlem4  22557  fmfnfm  22558  fmucnd  22893  cfilucfil  23161  fmcfil  23867
  Copyright terms: Public domain W3C validator