Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fbelss | Structured version Visualization version GIF version |
Description: An element of the filter base is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
fbelss | ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑋 ∈ 𝐹) → 𝑋 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fbsspw 22981 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐹 ⊆ 𝒫 𝐵) | |
2 | 1 | sselda 3922 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑋 ∈ 𝐹) → 𝑋 ∈ 𝒫 𝐵) |
3 | 2 | elpwid 4546 | 1 ⊢ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑋 ∈ 𝐹) → 𝑋 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3888 𝒫 cpw 4535 ‘cfv 6435 fBascfbas 20583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5077 df-opab 5139 df-mpt 5160 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6393 df-fun 6437 df-fv 6443 df-fbas 20592 |
This theorem is referenced by: fbdmn0 22983 filelss 23001 ssfg 23021 fgcl 23027 fbasrn 23033 fmfnfmlem4 23106 fmfnfm 23107 fmucnd 23442 cfilucfil 23713 fmcfil 24434 |
Copyright terms: Public domain | W3C validator |