MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbdmn0 Structured version   Visualization version   GIF version

Theorem fbdmn0 22415
Description: The domain of a filter base is nonempty. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbdmn0 (𝐹 ∈ (fBas‘𝐵) → 𝐵 ≠ ∅)

Proof of Theorem fbdmn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0nelfb 22412 . 2 (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹)
2 fveq2 6644 . . . . . 6 (𝐵 = ∅ → (fBas‘𝐵) = (fBas‘∅))
32eleq2d 2896 . . . . 5 (𝐵 = ∅ → (𝐹 ∈ (fBas‘𝐵) ↔ 𝐹 ∈ (fBas‘∅)))
43biimpd 231 . . . 4 (𝐵 = ∅ → (𝐹 ∈ (fBas‘𝐵) → 𝐹 ∈ (fBas‘∅)))
5 fbasne0 22411 . . . . . 6 (𝐹 ∈ (fBas‘∅) → 𝐹 ≠ ∅)
6 n0 4284 . . . . . 6 (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥𝐹)
75, 6sylib 220 . . . . 5 (𝐹 ∈ (fBas‘∅) → ∃𝑥 𝑥𝐹)
8 fbelss 22414 . . . . . . 7 ((𝐹 ∈ (fBas‘∅) ∧ 𝑥𝐹) → 𝑥 ⊆ ∅)
9 ss0 4326 . . . . . . 7 (𝑥 ⊆ ∅ → 𝑥 = ∅)
108, 9syl 17 . . . . . 6 ((𝐹 ∈ (fBas‘∅) ∧ 𝑥𝐹) → 𝑥 = ∅)
11 simpr 487 . . . . . 6 ((𝐹 ∈ (fBas‘∅) ∧ 𝑥𝐹) → 𝑥𝐹)
1210, 11eqeltrrd 2912 . . . . 5 ((𝐹 ∈ (fBas‘∅) ∧ 𝑥𝐹) → ∅ ∈ 𝐹)
137, 12exlimddv 1936 . . . 4 (𝐹 ∈ (fBas‘∅) → ∅ ∈ 𝐹)
144, 13syl6com 37 . . 3 (𝐹 ∈ (fBas‘𝐵) → (𝐵 = ∅ → ∅ ∈ 𝐹))
1514necon3bd 3020 . 2 (𝐹 ∈ (fBas‘𝐵) → (¬ ∅ ∈ 𝐹𝐵 ≠ ∅))
161, 15mpd 15 1 (𝐹 ∈ (fBas‘𝐵) → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3006  wss 3912  c0 4267  cfv 6329  fBascfbas 20506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4813  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5434  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-iota 6288  df-fun 6331  df-fv 6337  df-fbas 20515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator