| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fbdmn0 | Structured version Visualization version GIF version | ||
| Description: The domain of a filter base is nonempty. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| fbdmn0 | ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelfb 23718 | . 2 ⊢ (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹) | |
| 2 | fveq2 6858 | . . . . . 6 ⊢ (𝐵 = ∅ → (fBas‘𝐵) = (fBas‘∅)) | |
| 3 | 2 | eleq2d 2814 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐹 ∈ (fBas‘𝐵) ↔ 𝐹 ∈ (fBas‘∅))) |
| 4 | 3 | biimpd 229 | . . . 4 ⊢ (𝐵 = ∅ → (𝐹 ∈ (fBas‘𝐵) → 𝐹 ∈ (fBas‘∅))) |
| 5 | fbasne0 23717 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘∅) → 𝐹 ≠ ∅) | |
| 6 | n0 4316 | . . . . . 6 ⊢ (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐹) | |
| 7 | 5, 6 | sylib 218 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘∅) → ∃𝑥 𝑥 ∈ 𝐹) |
| 8 | fbelss 23720 | . . . . . . 7 ⊢ ((𝐹 ∈ (fBas‘∅) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ ∅) | |
| 9 | ss0 4365 | . . . . . . 7 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
| 10 | 8, 9 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘∅) ∧ 𝑥 ∈ 𝐹) → 𝑥 = ∅) |
| 11 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘∅) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
| 12 | 10, 11 | eqeltrrd 2829 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘∅) ∧ 𝑥 ∈ 𝐹) → ∅ ∈ 𝐹) |
| 13 | 7, 12 | exlimddv 1935 | . . . 4 ⊢ (𝐹 ∈ (fBas‘∅) → ∅ ∈ 𝐹) |
| 14 | 4, 13 | syl6com 37 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝐵) → (𝐵 = ∅ → ∅ ∈ 𝐹)) |
| 15 | 14 | necon3bd 2939 | . 2 ⊢ (𝐹 ∈ (fBas‘𝐵) → (¬ ∅ ∈ 𝐹 → 𝐵 ≠ ∅)) |
| 16 | 1, 15 | mpd 15 | 1 ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 ∅c0 4296 ‘cfv 6511 fBascfbas 21252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-fbas 21261 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |