MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbdmn0 Structured version   Visualization version   GIF version

Theorem fbdmn0 22436
Description: The domain of a filter base is nonempty. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbdmn0 (𝐹 ∈ (fBas‘𝐵) → 𝐵 ≠ ∅)

Proof of Theorem fbdmn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0nelfb 22433 . 2 (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹)
2 fveq2 6665 . . . . . 6 (𝐵 = ∅ → (fBas‘𝐵) = (fBas‘∅))
32eleq2d 2898 . . . . 5 (𝐵 = ∅ → (𝐹 ∈ (fBas‘𝐵) ↔ 𝐹 ∈ (fBas‘∅)))
43biimpd 231 . . . 4 (𝐵 = ∅ → (𝐹 ∈ (fBas‘𝐵) → 𝐹 ∈ (fBas‘∅)))
5 fbasne0 22432 . . . . . 6 (𝐹 ∈ (fBas‘∅) → 𝐹 ≠ ∅)
6 n0 4310 . . . . . 6 (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥𝐹)
75, 6sylib 220 . . . . 5 (𝐹 ∈ (fBas‘∅) → ∃𝑥 𝑥𝐹)
8 fbelss 22435 . . . . . . 7 ((𝐹 ∈ (fBas‘∅) ∧ 𝑥𝐹) → 𝑥 ⊆ ∅)
9 ss0 4352 . . . . . . 7 (𝑥 ⊆ ∅ → 𝑥 = ∅)
108, 9syl 17 . . . . . 6 ((𝐹 ∈ (fBas‘∅) ∧ 𝑥𝐹) → 𝑥 = ∅)
11 simpr 487 . . . . . 6 ((𝐹 ∈ (fBas‘∅) ∧ 𝑥𝐹) → 𝑥𝐹)
1210, 11eqeltrrd 2914 . . . . 5 ((𝐹 ∈ (fBas‘∅) ∧ 𝑥𝐹) → ∅ ∈ 𝐹)
137, 12exlimddv 1932 . . . 4 (𝐹 ∈ (fBas‘∅) → ∅ ∈ 𝐹)
144, 13syl6com 37 . . 3 (𝐹 ∈ (fBas‘𝐵) → (𝐵 = ∅ → ∅ ∈ 𝐹))
1514necon3bd 3030 . 2 (𝐹 ∈ (fBas‘𝐵) → (¬ ∅ ∈ 𝐹𝐵 ≠ ∅))
161, 15mpd 15 1 (𝐹 ∈ (fBas‘𝐵) → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wex 1776  wcel 2110  wne 3016  wss 3936  c0 4291  cfv 6350  fBascfbas 20527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fv 6358  df-fbas 20536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator