| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fbdmn0 | Structured version Visualization version GIF version | ||
| Description: The domain of a filter base is nonempty. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| fbdmn0 | ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelfb 23747 | . 2 ⊢ (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹) | |
| 2 | fveq2 6828 | . . . . . 6 ⊢ (𝐵 = ∅ → (fBas‘𝐵) = (fBas‘∅)) | |
| 3 | 2 | eleq2d 2819 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐹 ∈ (fBas‘𝐵) ↔ 𝐹 ∈ (fBas‘∅))) |
| 4 | 3 | biimpd 229 | . . . 4 ⊢ (𝐵 = ∅ → (𝐹 ∈ (fBas‘𝐵) → 𝐹 ∈ (fBas‘∅))) |
| 5 | fbasne0 23746 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘∅) → 𝐹 ≠ ∅) | |
| 6 | n0 4302 | . . . . . 6 ⊢ (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐹) | |
| 7 | 5, 6 | sylib 218 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘∅) → ∃𝑥 𝑥 ∈ 𝐹) |
| 8 | fbelss 23749 | . . . . . . 7 ⊢ ((𝐹 ∈ (fBas‘∅) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ ∅) | |
| 9 | ss0 4351 | . . . . . . 7 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
| 10 | 8, 9 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘∅) ∧ 𝑥 ∈ 𝐹) → 𝑥 = ∅) |
| 11 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘∅) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
| 12 | 10, 11 | eqeltrrd 2834 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘∅) ∧ 𝑥 ∈ 𝐹) → ∅ ∈ 𝐹) |
| 13 | 7, 12 | exlimddv 1936 | . . . 4 ⊢ (𝐹 ∈ (fBas‘∅) → ∅ ∈ 𝐹) |
| 14 | 4, 13 | syl6com 37 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝐵) → (𝐵 = ∅ → ∅ ∈ 𝐹)) |
| 15 | 14 | necon3bd 2943 | . 2 ⊢ (𝐹 ∈ (fBas‘𝐵) → (¬ ∅ ∈ 𝐹 → 𝐵 ≠ ∅)) |
| 16 | 1, 15 | mpd 15 | 1 ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 ∅c0 4282 ‘cfv 6486 fBascfbas 21281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-fbas 21290 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |