| Step | Hyp | Ref
| Expression |
| 1 | | elfvdm 6943 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
| 2 | | fmval 23951 |
. . . 4
⊢ ((𝑋 ∈ dom ∞Met ∧
𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) |
| 3 | 1, 2 | syl3an1 1164 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) |
| 4 | 3 | eleq1d 2826 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ∈ (CauFil‘𝐷))) |
| 5 | | simp1 1137 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 6 | | simp2 1138 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝐵 ∈ (fBas‘𝑌)) |
| 7 | | simp3 1139 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝐹:𝑌⟶𝑋) |
| 8 | 1 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝑋 ∈ dom ∞Met) |
| 9 | | eqid 2737 |
. . . . 5
⊢ ran
(𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) = ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) |
| 10 | 9 | fbasrn 23892 |
. . . 4
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋 ∧ 𝑋 ∈ dom ∞Met) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
| 11 | 6, 7, 8, 10 | syl3anc 1373 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
| 12 | | fgcfil 25305 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) → ((𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑠 ∈ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥)) |
| 13 | 5, 11, 12 | syl2anc 584 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑠 ∈ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥)) |
| 14 | | imassrn 6089 |
. . . . . . . 8
⊢ (𝐹 “ 𝑦) ⊆ ran 𝐹 |
| 15 | | frn 6743 |
. . . . . . . . 9
⊢ (𝐹:𝑌⟶𝑋 → ran 𝐹 ⊆ 𝑋) |
| 16 | 15 | 3ad2ant3 1136 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ran 𝐹 ⊆ 𝑋) |
| 17 | 14, 16 | sstrid 3995 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐹 “ 𝑦) ⊆ 𝑋) |
| 18 | 8, 17 | ssexd 5324 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐹 “ 𝑦) ∈ V) |
| 19 | 18 | ralrimivw 3150 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ∀𝑦 ∈ 𝐵 (𝐹 “ 𝑦) ∈ V) |
| 20 | | eqid 2737 |
. . . . . 6
⊢ (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) = (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) |
| 21 | | raleq 3323 |
. . . . . . 7
⊢ (𝑠 = (𝐹 “ 𝑦) → (∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥)) |
| 22 | 21 | raleqbi1dv 3338 |
. . . . . 6
⊢ (𝑠 = (𝐹 “ 𝑦) → (∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑢 ∈ (𝐹 “ 𝑦)∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥)) |
| 23 | 20, 22 | rexrnmptw 7115 |
. . . . 5
⊢
(∀𝑦 ∈
𝐵 (𝐹 “ 𝑦) ∈ V → (∃𝑠 ∈ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦 ∈ 𝐵 ∀𝑢 ∈ (𝐹 “ 𝑦)∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥)) |
| 24 | 19, 23 | syl 17 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∃𝑠 ∈ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦 ∈ 𝐵 ∀𝑢 ∈ (𝐹 “ 𝑦)∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥)) |
| 25 | | simpl3 1194 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ 𝐵) → 𝐹:𝑌⟶𝑋) |
| 26 | 25 | ffnd 6737 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ 𝐵) → 𝐹 Fn 𝑌) |
| 27 | | fbelss 23841 |
. . . . . . . 8
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ 𝑌) |
| 28 | 6, 27 | sylan 580 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ 𝑌) |
| 29 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑢 = (𝐹‘𝑧) → (𝑢𝐷𝑣) = ((𝐹‘𝑧)𝐷𝑣)) |
| 30 | 29 | breq1d 5153 |
. . . . . . . . 9
⊢ (𝑢 = (𝐹‘𝑧) → ((𝑢𝐷𝑣) < 𝑥 ↔ ((𝐹‘𝑧)𝐷𝑣) < 𝑥)) |
| 31 | 30 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑢 = (𝐹‘𝑧) → (∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝐹 “ 𝑦)((𝐹‘𝑧)𝐷𝑣) < 𝑥)) |
| 32 | 31 | ralima 7257 |
. . . . . . 7
⊢ ((𝐹 Fn 𝑌 ∧ 𝑦 ⊆ 𝑌) → (∀𝑢 ∈ (𝐹 “ 𝑦)∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧 ∈ 𝑦 ∀𝑣 ∈ (𝐹 “ 𝑦)((𝐹‘𝑧)𝐷𝑣) < 𝑥)) |
| 33 | 26, 28, 32 | syl2anc 584 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ 𝐵) → (∀𝑢 ∈ (𝐹 “ 𝑦)∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧 ∈ 𝑦 ∀𝑣 ∈ (𝐹 “ 𝑦)((𝐹‘𝑧)𝐷𝑣) < 𝑥)) |
| 34 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑣 = (𝐹‘𝑤) → ((𝐹‘𝑧)𝐷𝑣) = ((𝐹‘𝑧)𝐷(𝐹‘𝑤))) |
| 35 | 34 | breq1d 5153 |
. . . . . . . . 9
⊢ (𝑣 = (𝐹‘𝑤) → (((𝐹‘𝑧)𝐷𝑣) < 𝑥 ↔ ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
| 36 | 35 | ralima 7257 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝑌 ∧ 𝑦 ⊆ 𝑌) → (∀𝑣 ∈ (𝐹 “ 𝑦)((𝐹‘𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
| 37 | 26, 28, 36 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ 𝐵) → (∀𝑣 ∈ (𝐹 “ 𝑦)((𝐹‘𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
| 38 | 37 | ralbidv 3178 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ 𝐵) → (∀𝑧 ∈ 𝑦 ∀𝑣 ∈ (𝐹 “ 𝑦)((𝐹‘𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
| 39 | 33, 38 | bitrd 279 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ 𝐵) → (∀𝑢 ∈ (𝐹 “ 𝑦)∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
| 40 | 39 | rexbidva 3177 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∃𝑦 ∈ 𝐵 ∀𝑢 ∈ (𝐹 “ 𝑦)∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
| 41 | 24, 40 | bitrd 279 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∃𝑠 ∈ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
| 42 | 41 | ralbidv 3178 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∀𝑥 ∈ ℝ+ ∃𝑠 ∈ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
| 43 | 4, 13, 42 | 3bitrd 305 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |