MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmcfil Structured version   Visualization version   GIF version

Theorem fmcfil 24620
Description: The Cauchy filter condition for a filter map. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
fmcfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝑌,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧

Proof of Theorem fmcfil
Dummy variables 𝑢 𝑠 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6876 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2 fmval 23278 . . . 4 ((𝑋 ∈ dom ∞Met ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
31, 2syl3an1 1163 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
43eleq1d 2822 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (CauFil‘𝐷)))
5 simp1 1136 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐷 ∈ (∞Met‘𝑋))
6 simp2 1137 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐵 ∈ (fBas‘𝑌))
7 simp3 1138 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
813ad2ant1 1133 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋 ∈ dom ∞Met)
9 eqid 2736 . . . . 5 ran (𝑦𝐵 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦))
109fbasrn 23219 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋 ∈ dom ∞Met) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
116, 7, 8, 10syl3anc 1371 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
12 fgcfil 24619 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋)) → ((𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥))
135, 11, 12syl2anc 584 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥))
14 imassrn 6022 . . . . . . . 8 (𝐹𝑦) ⊆ ran 𝐹
15 frn 6672 . . . . . . . . 9 (𝐹:𝑌𝑋 → ran 𝐹𝑋)
16153ad2ant3 1135 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran 𝐹𝑋)
1714, 16sstrid 3953 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐹𝑦) ⊆ 𝑋)
188, 17ssexd 5279 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐹𝑦) ∈ V)
1918ralrimivw 3145 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ∀𝑦𝐵 (𝐹𝑦) ∈ V)
20 eqid 2736 . . . . . 6 (𝑦𝐵 ↦ (𝐹𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦))
21 raleq 3307 . . . . . . 7 (𝑠 = (𝐹𝑦) → (∀𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
2221raleqbi1dv 3305 . . . . . 6 (𝑠 = (𝐹𝑦) → (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
2320, 22rexrnmptw 7041 . . . . 5 (∀𝑦𝐵 (𝐹𝑦) ∈ V → (∃𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
2419, 23syl 17 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
25 simpl3 1193 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → 𝐹:𝑌𝑋)
2625ffnd 6666 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → 𝐹 Fn 𝑌)
27 fbelss 23168 . . . . . . . 8 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑦𝐵) → 𝑦𝑌)
286, 27sylan 580 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → 𝑦𝑌)
29 oveq1 7360 . . . . . . . . . 10 (𝑢 = (𝐹𝑧) → (𝑢𝐷𝑣) = ((𝐹𝑧)𝐷𝑣))
3029breq1d 5113 . . . . . . . . 9 (𝑢 = (𝐹𝑧) → ((𝑢𝐷𝑣) < 𝑥 ↔ ((𝐹𝑧)𝐷𝑣) < 𝑥))
3130ralbidv 3172 . . . . . . . 8 (𝑢 = (𝐹𝑧) → (∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥))
3231ralima 7184 . . . . . . 7 ((𝐹 Fn 𝑌𝑦𝑌) → (∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥))
3326, 28, 32syl2anc 584 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥))
34 oveq2 7361 . . . . . . . . . 10 (𝑣 = (𝐹𝑤) → ((𝐹𝑧)𝐷𝑣) = ((𝐹𝑧)𝐷(𝐹𝑤)))
3534breq1d 5113 . . . . . . . . 9 (𝑣 = (𝐹𝑤) → (((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3635ralima 7184 . . . . . . . 8 ((𝐹 Fn 𝑌𝑦𝑌) → (∀𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3726, 28, 36syl2anc 584 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3837ralbidv 3172 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑧𝑦𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3933, 38bitrd 278 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4039rexbidva 3171 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦𝐵𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4124, 40bitrd 278 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4241ralbidv 3172 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∀𝑥 ∈ ℝ+𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
434, 13, 423bitrd 304 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3062  wrex 3071  Vcvv 3443  wss 3908   class class class wbr 5103  cmpt 5186  dom cdm 5631  ran crn 5632  cima 5634   Fn wfn 6488  wf 6489  cfv 6493  (class class class)co 7353   < clt 11185  +crp 12907  ∞Metcxmet 20766  fBascfbas 20769  filGencfg 20770   FilMap cfm 23268  CauFilccfil 24600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-po 5543  df-so 5544  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7917  df-2nd 7918  df-er 8644  df-map 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-div 11809  df-2 12212  df-rp 12908  df-xneg 13025  df-xadd 13026  df-xmul 13027  df-ico 13262  df-xmet 20774  df-fbas 20778  df-fg 20779  df-fil 23181  df-fm 23273  df-cfil 24603
This theorem is referenced by:  caucfil  24631
  Copyright terms: Public domain W3C validator