Step | Hyp | Ref
| Expression |
1 | | elfvdm 6806 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
2 | | fmval 23094 |
. . . 4
⊢ ((𝑋 ∈ dom ∞Met ∧
𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) |
3 | 1, 2 | syl3an1 1162 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) |
4 | 3 | eleq1d 2823 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ∈ (CauFil‘𝐷))) |
5 | | simp1 1135 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
6 | | simp2 1136 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝐵 ∈ (fBas‘𝑌)) |
7 | | simp3 1137 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝐹:𝑌⟶𝑋) |
8 | 1 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝑋 ∈ dom ∞Met) |
9 | | eqid 2738 |
. . . . 5
⊢ ran
(𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) = ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) |
10 | 9 | fbasrn 23035 |
. . . 4
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋 ∧ 𝑋 ∈ dom ∞Met) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
11 | 6, 7, 8, 10 | syl3anc 1370 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) |
12 | | fgcfil 24435 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) ∈ (fBas‘𝑋)) → ((𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑠 ∈ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥)) |
13 | 5, 11, 12 | syl2anc 584 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑠 ∈ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥)) |
14 | | imassrn 5980 |
. . . . . . . 8
⊢ (𝐹 “ 𝑦) ⊆ ran 𝐹 |
15 | | frn 6607 |
. . . . . . . . 9
⊢ (𝐹:𝑌⟶𝑋 → ran 𝐹 ⊆ 𝑋) |
16 | 15 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ran 𝐹 ⊆ 𝑋) |
17 | 14, 16 | sstrid 3932 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐹 “ 𝑦) ⊆ 𝑋) |
18 | 8, 17 | ssexd 5248 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐹 “ 𝑦) ∈ V) |
19 | 18 | ralrimivw 3104 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ∀𝑦 ∈ 𝐵 (𝐹 “ 𝑦) ∈ V) |
20 | | eqid 2738 |
. . . . . 6
⊢ (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) = (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)) |
21 | | raleq 3342 |
. . . . . . 7
⊢ (𝑠 = (𝐹 “ 𝑦) → (∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥)) |
22 | 21 | raleqbi1dv 3340 |
. . . . . 6
⊢ (𝑠 = (𝐹 “ 𝑦) → (∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑢 ∈ (𝐹 “ 𝑦)∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥)) |
23 | 20, 22 | rexrnmptw 6971 |
. . . . 5
⊢
(∀𝑦 ∈
𝐵 (𝐹 “ 𝑦) ∈ V → (∃𝑠 ∈ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦 ∈ 𝐵 ∀𝑢 ∈ (𝐹 “ 𝑦)∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥)) |
24 | 19, 23 | syl 17 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∃𝑠 ∈ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦 ∈ 𝐵 ∀𝑢 ∈ (𝐹 “ 𝑦)∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥)) |
25 | | simpl3 1192 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ 𝐵) → 𝐹:𝑌⟶𝑋) |
26 | 25 | ffnd 6601 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ 𝐵) → 𝐹 Fn 𝑌) |
27 | | fbelss 22984 |
. . . . . . . 8
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ 𝑌) |
28 | 6, 27 | sylan 580 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ 𝑌) |
29 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑢 = (𝐹‘𝑧) → (𝑢𝐷𝑣) = ((𝐹‘𝑧)𝐷𝑣)) |
30 | 29 | breq1d 5084 |
. . . . . . . . 9
⊢ (𝑢 = (𝐹‘𝑧) → ((𝑢𝐷𝑣) < 𝑥 ↔ ((𝐹‘𝑧)𝐷𝑣) < 𝑥)) |
31 | 30 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑢 = (𝐹‘𝑧) → (∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝐹 “ 𝑦)((𝐹‘𝑧)𝐷𝑣) < 𝑥)) |
32 | 31 | ralima 7114 |
. . . . . . 7
⊢ ((𝐹 Fn 𝑌 ∧ 𝑦 ⊆ 𝑌) → (∀𝑢 ∈ (𝐹 “ 𝑦)∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧 ∈ 𝑦 ∀𝑣 ∈ (𝐹 “ 𝑦)((𝐹‘𝑧)𝐷𝑣) < 𝑥)) |
33 | 26, 28, 32 | syl2anc 584 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ 𝐵) → (∀𝑢 ∈ (𝐹 “ 𝑦)∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧 ∈ 𝑦 ∀𝑣 ∈ (𝐹 “ 𝑦)((𝐹‘𝑧)𝐷𝑣) < 𝑥)) |
34 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑣 = (𝐹‘𝑤) → ((𝐹‘𝑧)𝐷𝑣) = ((𝐹‘𝑧)𝐷(𝐹‘𝑤))) |
35 | 34 | breq1d 5084 |
. . . . . . . . 9
⊢ (𝑣 = (𝐹‘𝑤) → (((𝐹‘𝑧)𝐷𝑣) < 𝑥 ↔ ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
36 | 35 | ralima 7114 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝑌 ∧ 𝑦 ⊆ 𝑌) → (∀𝑣 ∈ (𝐹 “ 𝑦)((𝐹‘𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
37 | 26, 28, 36 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ 𝐵) → (∀𝑣 ∈ (𝐹 “ 𝑦)((𝐹‘𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
38 | 37 | ralbidv 3112 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ 𝐵) → (∀𝑧 ∈ 𝑦 ∀𝑣 ∈ (𝐹 “ 𝑦)((𝐹‘𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
39 | 33, 38 | bitrd 278 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑦 ∈ 𝐵) → (∀𝑢 ∈ (𝐹 “ 𝑦)∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
40 | 39 | rexbidva 3225 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∃𝑦 ∈ 𝐵 ∀𝑢 ∈ (𝐹 “ 𝑦)∀𝑣 ∈ (𝐹 “ 𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
41 | 24, 40 | bitrd 278 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∃𝑠 ∈ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
42 | 41 | ralbidv 3112 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∀𝑥 ∈ ℝ+ ∃𝑠 ∈ ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |
43 | 4, 13, 42 | 3bitrd 305 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) |