MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmcfil Structured version   Visualization version   GIF version

Theorem fmcfil 25319
Description: The Cauchy filter condition for a filter map. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
fmcfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧
Allowed substitution hint:   𝑌(𝑤)

Proof of Theorem fmcfil
Dummy variables 𝑢 𝑠 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6943 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2 fmval 23966 . . . 4 ((𝑋 ∈ dom ∞Met ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
31, 2syl3an1 1162 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
43eleq1d 2823 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (CauFil‘𝐷)))
5 simp1 1135 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐷 ∈ (∞Met‘𝑋))
6 simp2 1136 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐵 ∈ (fBas‘𝑌))
7 simp3 1137 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
813ad2ant1 1132 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋 ∈ dom ∞Met)
9 eqid 2734 . . . . 5 ran (𝑦𝐵 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦))
109fbasrn 23907 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋 ∈ dom ∞Met) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
116, 7, 8, 10syl3anc 1370 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
12 fgcfil 25318 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋)) → ((𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥))
135, 11, 12syl2anc 584 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥))
14 imassrn 6090 . . . . . . . 8 (𝐹𝑦) ⊆ ran 𝐹
15 frn 6743 . . . . . . . . 9 (𝐹:𝑌𝑋 → ran 𝐹𝑋)
16153ad2ant3 1134 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran 𝐹𝑋)
1714, 16sstrid 4006 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐹𝑦) ⊆ 𝑋)
188, 17ssexd 5329 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐹𝑦) ∈ V)
1918ralrimivw 3147 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ∀𝑦𝐵 (𝐹𝑦) ∈ V)
20 eqid 2734 . . . . . 6 (𝑦𝐵 ↦ (𝐹𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦))
21 raleq 3320 . . . . . . 7 (𝑠 = (𝐹𝑦) → (∀𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
2221raleqbi1dv 3335 . . . . . 6 (𝑠 = (𝐹𝑦) → (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
2320, 22rexrnmptw 7114 . . . . 5 (∀𝑦𝐵 (𝐹𝑦) ∈ V → (∃𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
2419, 23syl 17 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
25 simpl3 1192 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → 𝐹:𝑌𝑋)
2625ffnd 6737 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → 𝐹 Fn 𝑌)
27 fbelss 23856 . . . . . . . 8 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑦𝐵) → 𝑦𝑌)
286, 27sylan 580 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → 𝑦𝑌)
29 oveq1 7437 . . . . . . . . . 10 (𝑢 = (𝐹𝑧) → (𝑢𝐷𝑣) = ((𝐹𝑧)𝐷𝑣))
3029breq1d 5157 . . . . . . . . 9 (𝑢 = (𝐹𝑧) → ((𝑢𝐷𝑣) < 𝑥 ↔ ((𝐹𝑧)𝐷𝑣) < 𝑥))
3130ralbidv 3175 . . . . . . . 8 (𝑢 = (𝐹𝑧) → (∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥))
3231ralima 7256 . . . . . . 7 ((𝐹 Fn 𝑌𝑦𝑌) → (∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥))
3326, 28, 32syl2anc 584 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥))
34 oveq2 7438 . . . . . . . . . 10 (𝑣 = (𝐹𝑤) → ((𝐹𝑧)𝐷𝑣) = ((𝐹𝑧)𝐷(𝐹𝑤)))
3534breq1d 5157 . . . . . . . . 9 (𝑣 = (𝐹𝑤) → (((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3635ralima 7256 . . . . . . . 8 ((𝐹 Fn 𝑌𝑦𝑌) → (∀𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3726, 28, 36syl2anc 584 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3837ralbidv 3175 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑧𝑦𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3933, 38bitrd 279 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4039rexbidva 3174 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦𝐵𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4124, 40bitrd 279 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4241ralbidv 3175 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∀𝑥 ∈ ℝ+𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
434, 13, 423bitrd 305 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  wrex 3067  Vcvv 3477  wss 3962   class class class wbr 5147  cmpt 5230  dom cdm 5688  ran crn 5689  cima 5691   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430   < clt 11292  +crp 13031  ∞Metcxmet 21366  fBascfbas 21369  filGencfg 21370   FilMap cfm 23956  CauFilccfil 25299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-2 12326  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ico 13389  df-xmet 21374  df-fbas 21378  df-fg 21379  df-fil 23869  df-fm 23961  df-cfil 25302
This theorem is referenced by:  caucfil  25330
  Copyright terms: Public domain W3C validator