MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmcfil Structured version   Visualization version   GIF version

Theorem fmcfil 25325
Description: The Cauchy filter condition for a filter map. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
fmcfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧
Allowed substitution hint:   𝑌(𝑤)

Proof of Theorem fmcfil
Dummy variables 𝑢 𝑠 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6957 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2 fmval 23972 . . . 4 ((𝑋 ∈ dom ∞Met ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
31, 2syl3an1 1163 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
43eleq1d 2829 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (CauFil‘𝐷)))
5 simp1 1136 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐷 ∈ (∞Met‘𝑋))
6 simp2 1137 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐵 ∈ (fBas‘𝑌))
7 simp3 1138 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
813ad2ant1 1133 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋 ∈ dom ∞Met)
9 eqid 2740 . . . . 5 ran (𝑦𝐵 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦))
109fbasrn 23913 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋 ∈ dom ∞Met) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
116, 7, 8, 10syl3anc 1371 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
12 fgcfil 25324 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋)) → ((𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥))
135, 11, 12syl2anc 583 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥))
14 imassrn 6100 . . . . . . . 8 (𝐹𝑦) ⊆ ran 𝐹
15 frn 6754 . . . . . . . . 9 (𝐹:𝑌𝑋 → ran 𝐹𝑋)
16153ad2ant3 1135 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran 𝐹𝑋)
1714, 16sstrid 4020 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐹𝑦) ⊆ 𝑋)
188, 17ssexd 5342 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐹𝑦) ∈ V)
1918ralrimivw 3156 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ∀𝑦𝐵 (𝐹𝑦) ∈ V)
20 eqid 2740 . . . . . 6 (𝑦𝐵 ↦ (𝐹𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦))
21 raleq 3331 . . . . . . 7 (𝑠 = (𝐹𝑦) → (∀𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
2221raleqbi1dv 3346 . . . . . 6 (𝑠 = (𝐹𝑦) → (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
2320, 22rexrnmptw 7129 . . . . 5 (∀𝑦𝐵 (𝐹𝑦) ∈ V → (∃𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
2419, 23syl 17 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
25 simpl3 1193 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → 𝐹:𝑌𝑋)
2625ffnd 6748 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → 𝐹 Fn 𝑌)
27 fbelss 23862 . . . . . . . 8 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑦𝐵) → 𝑦𝑌)
286, 27sylan 579 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → 𝑦𝑌)
29 oveq1 7455 . . . . . . . . . 10 (𝑢 = (𝐹𝑧) → (𝑢𝐷𝑣) = ((𝐹𝑧)𝐷𝑣))
3029breq1d 5176 . . . . . . . . 9 (𝑢 = (𝐹𝑧) → ((𝑢𝐷𝑣) < 𝑥 ↔ ((𝐹𝑧)𝐷𝑣) < 𝑥))
3130ralbidv 3184 . . . . . . . 8 (𝑢 = (𝐹𝑧) → (∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥))
3231ralima 7274 . . . . . . 7 ((𝐹 Fn 𝑌𝑦𝑌) → (∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥))
3326, 28, 32syl2anc 583 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥))
34 oveq2 7456 . . . . . . . . . 10 (𝑣 = (𝐹𝑤) → ((𝐹𝑧)𝐷𝑣) = ((𝐹𝑧)𝐷(𝐹𝑤)))
3534breq1d 5176 . . . . . . . . 9 (𝑣 = (𝐹𝑤) → (((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3635ralima 7274 . . . . . . . 8 ((𝐹 Fn 𝑌𝑦𝑌) → (∀𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3726, 28, 36syl2anc 583 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3837ralbidv 3184 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑧𝑦𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3933, 38bitrd 279 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4039rexbidva 3183 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦𝐵𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4124, 40bitrd 279 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4241ralbidv 3184 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∀𝑥 ∈ ℝ+𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
434, 13, 423bitrd 305 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448   < clt 11324  +crp 13057  ∞Metcxmet 21372  fBascfbas 21375  filGencfg 21376   FilMap cfm 23962  CauFilccfil 25305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-xmet 21380  df-fbas 21384  df-fg 21385  df-fil 23875  df-fm 23967  df-cfil 25308
This theorem is referenced by:  caucfil  25336
  Copyright terms: Public domain W3C validator