MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filelss Structured version   Visualization version   GIF version

Theorem filelss 22457
Description: An element of a filter is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filelss ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)

Proof of Theorem filelss
StepHypRef Expression
1 filfbas 22453 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbelss 22438 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)
31, 2sylan 583 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2111  wss 3881  cfv 6324  fBascfbas 20079  Filcfil 22450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fv 6332  df-fbas 20088  df-fil 22451
This theorem is referenced by:  filin  22459  filtop  22460  filuni  22490  trfil2  22492  trfil3  22493  fgtr  22495  trfg  22496  ufilmax  22512  isufil2  22513  ufileu  22524  filufint  22525  cfinufil  22533  ufilen  22535  rnelfm  22558  fmfnfmlem4  22562  fmid  22565  flimclsi  22583  flimrest  22588  txflf  22611  fclsopn  22619  fclsrest  22629  flimfnfcls  22633  fclscmpi  22634  iscfil2  23870  cfil3i  23873  iscmet3lem2  23896  iscmet3  23897  cfilresi  23899  cfilres  23900  filnetlem3  33841
  Copyright terms: Public domain W3C validator