Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > filelss | Structured version Visualization version GIF version |
Description: An element of a filter is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
filelss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filfbas 22907 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
2 | fbelss 22892 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) | |
3 | 1, 2 | sylan 579 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 fBascfbas 20498 Filcfil 22904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-fbas 20507 df-fil 22905 |
This theorem is referenced by: filin 22913 filtop 22914 filuni 22944 trfil2 22946 trfil3 22947 fgtr 22949 trfg 22950 ufilmax 22966 isufil2 22967 ufileu 22978 filufint 22979 cfinufil 22987 ufilen 22989 rnelfm 23012 fmfnfmlem4 23016 fmid 23019 flimclsi 23037 flimrest 23042 txflf 23065 fclsopn 23073 fclsrest 23083 flimfnfcls 23087 fclscmpi 23088 iscfil2 24335 cfil3i 24338 iscmet3lem2 24361 iscmet3 24362 cfilresi 24364 cfilres 24365 filnetlem3 34496 |
Copyright terms: Public domain | W3C validator |