| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filelss | Structured version Visualization version GIF version | ||
| Description: An element of a filter is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filelss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas 23742 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 2 | fbelss 23727 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 ‘cfv 6514 fBascfbas 21259 Filcfil 23739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-fbas 21268 df-fil 23740 |
| This theorem is referenced by: filin 23748 filtop 23749 filuni 23779 trfil2 23781 trfil3 23782 fgtr 23784 trfg 23785 ufilmax 23801 isufil2 23802 ufileu 23813 filufint 23814 cfinufil 23822 ufilen 23824 rnelfm 23847 fmfnfmlem4 23851 fmid 23854 flimclsi 23872 flimrest 23877 txflf 23900 fclsopn 23908 fclsrest 23918 flimfnfcls 23922 fclscmpi 23923 iscfil2 25173 cfil3i 25176 iscmet3lem2 25199 iscmet3 25200 cfilresi 25202 cfilres 25203 filnetlem3 36375 |
| Copyright terms: Public domain | W3C validator |