| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filelss | Structured version Visualization version GIF version | ||
| Description: An element of a filter is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filelss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas 23786 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 2 | fbelss 23771 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3926 ‘cfv 6531 fBascfbas 21303 Filcfil 23783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-fbas 21312 df-fil 23784 |
| This theorem is referenced by: filin 23792 filtop 23793 filuni 23823 trfil2 23825 trfil3 23826 fgtr 23828 trfg 23829 ufilmax 23845 isufil2 23846 ufileu 23857 filufint 23858 cfinufil 23866 ufilen 23868 rnelfm 23891 fmfnfmlem4 23895 fmid 23898 flimclsi 23916 flimrest 23921 txflf 23944 fclsopn 23952 fclsrest 23962 flimfnfcls 23966 fclscmpi 23967 iscfil2 25218 cfil3i 25221 iscmet3lem2 25244 iscmet3 25245 cfilresi 25247 cfilres 25248 filnetlem3 36398 |
| Copyright terms: Public domain | W3C validator |