| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filelss | Structured version Visualization version GIF version | ||
| Description: An element of a filter is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filelss | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas 23751 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 2 | fbelss 23736 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 fBascfbas 21267 Filcfil 23748 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-fbas 21276 df-fil 23749 |
| This theorem is referenced by: filin 23757 filtop 23758 filuni 23788 trfil2 23790 trfil3 23791 fgtr 23793 trfg 23794 ufilmax 23810 isufil2 23811 ufileu 23822 filufint 23823 cfinufil 23831 ufilen 23833 rnelfm 23856 fmfnfmlem4 23860 fmid 23863 flimclsi 23881 flimrest 23886 txflf 23909 fclsopn 23917 fclsrest 23927 flimfnfcls 23931 fclscmpi 23932 iscfil2 25182 cfil3i 25185 iscmet3lem2 25208 iscmet3 25209 cfilresi 25211 cfilres 25212 filnetlem3 36353 |
| Copyright terms: Public domain | W3C validator |