MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filelss Structured version   Visualization version   GIF version

Theorem filelss 23881
Description: An element of a filter is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filelss ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)

Proof of Theorem filelss
StepHypRef Expression
1 filfbas 23877 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbelss 23862 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)
31, 2sylan 579 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wss 3976  cfv 6573  fBascfbas 21375  Filcfil 23874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-fbas 21384  df-fil 23875
This theorem is referenced by:  filin  23883  filtop  23884  filuni  23914  trfil2  23916  trfil3  23917  fgtr  23919  trfg  23920  ufilmax  23936  isufil2  23937  ufileu  23948  filufint  23949  cfinufil  23957  ufilen  23959  rnelfm  23982  fmfnfmlem4  23986  fmid  23989  flimclsi  24007  flimrest  24012  txflf  24035  fclsopn  24043  fclsrest  24053  flimfnfcls  24057  fclscmpi  24058  iscfil2  25319  cfil3i  25322  iscmet3lem2  25345  iscmet3  25346  cfilresi  25348  cfilres  25349  filnetlem3  36346
  Copyright terms: Public domain W3C validator