MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filelss Structured version   Visualization version   GIF version

Theorem filelss 22911
Description: An element of a filter is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filelss ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)

Proof of Theorem filelss
StepHypRef Expression
1 filfbas 22907 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbelss 22892 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)
31, 2sylan 579 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wss 3883  cfv 6418  fBascfbas 20498  Filcfil 22904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-fbas 20507  df-fil 22905
This theorem is referenced by:  filin  22913  filtop  22914  filuni  22944  trfil2  22946  trfil3  22947  fgtr  22949  trfg  22950  ufilmax  22966  isufil2  22967  ufileu  22978  filufint  22979  cfinufil  22987  ufilen  22989  rnelfm  23012  fmfnfmlem4  23016  fmid  23019  flimclsi  23037  flimrest  23042  txflf  23065  fclsopn  23073  fclsrest  23083  flimfnfcls  23087  fclscmpi  23088  iscfil2  24335  cfil3i  24338  iscmet3lem2  24361  iscmet3  24362  cfilresi  24364  cfilres  24365  filnetlem3  34496
  Copyright terms: Public domain W3C validator