Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neifg Structured version   Visualization version   GIF version

Theorem neifg 33832
Description: The neighborhood filter of a nonempty set is generated by its open supersets. See comments for opnfbas 22447. (Contributed by Jeff Hankins, 3-Sep-2009.)
Hypothesis
Ref Expression
neifg.1 𝑋 = 𝐽
Assertion
Ref Expression
neifg ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = ((nei‘𝐽)‘𝑆))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem neifg
Dummy variables 𝑢 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neifg.1 . . . 4 𝑋 = 𝐽
21opnfbas 22447 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → {𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋))
3 fgval 22475 . . 3 ({𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅})
42, 3syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅})
5 pweq 4513 . . . . . . 7 (𝑡 = 𝑢 → 𝒫 𝑡 = 𝒫 𝑢)
65ineq2d 4139 . . . . . 6 (𝑡 = 𝑢 → ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) = ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢))
76neeq1d 3046 . . . . 5 (𝑡 = 𝑢 → (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅ ↔ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅))
87elrab 3628 . . . 4 (𝑢 ∈ {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅} ↔ (𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅))
9 velpw 4502 . . . . . . 7 (𝑢 ∈ 𝒫 𝑋𝑢𝑋)
109a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑢 ∈ 𝒫 𝑋𝑢𝑋))
11 n0 4260 . . . . . . . 8 (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢))
12 elin 3897 . . . . . . . . . 10 (𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ↔ (𝑧 ∈ {𝑥𝐽𝑆𝑥} ∧ 𝑧 ∈ 𝒫 𝑢))
13 sseq2 3941 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑆𝑥𝑆𝑧))
1413elrab 3628 . . . . . . . . . . 11 (𝑧 ∈ {𝑥𝐽𝑆𝑥} ↔ (𝑧𝐽𝑆𝑧))
15 velpw 4502 . . . . . . . . . . 11 (𝑧 ∈ 𝒫 𝑢𝑧𝑢)
1614, 15anbi12i 629 . . . . . . . . . 10 ((𝑧 ∈ {𝑥𝐽𝑆𝑥} ∧ 𝑧 ∈ 𝒫 𝑢) ↔ ((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
1712, 16bitri 278 . . . . . . . . 9 (𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ↔ ((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
1817exbii 1849 . . . . . . . 8 (∃𝑧 𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ↔ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
1911, 18bitri 278 . . . . . . 7 (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
2019a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢)))
2110, 20anbi12d 633 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅) ↔ (𝑢𝑋 ∧ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))))
22 anass 472 . . . . . . . . 9 (((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢) ↔ (𝑧𝐽 ∧ (𝑆𝑧𝑧𝑢)))
2322exbii 1849 . . . . . . . 8 (∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢) ↔ ∃𝑧(𝑧𝐽 ∧ (𝑆𝑧𝑧𝑢)))
24 df-rex 3112 . . . . . . . 8 (∃𝑧𝐽 (𝑆𝑧𝑧𝑢) ↔ ∃𝑧(𝑧𝐽 ∧ (𝑆𝑧𝑧𝑢)))
2523, 24bitr4i 281 . . . . . . 7 (∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢) ↔ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢))
2625anbi2i 625 . . . . . 6 ((𝑢𝑋 ∧ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢)) ↔ (𝑢𝑋 ∧ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢)))
271isnei 21708 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑢 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑢𝑋 ∧ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢))))
28273adant3 1129 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑢 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑢𝑋 ∧ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢))))
2926, 28bitr4id 293 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑢𝑋 ∧ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢)) ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆)))
3021, 29bitrd 282 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅) ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆)))
318, 30syl5bb 286 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑢 ∈ {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅} ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆)))
3231eqrdv 2796 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅} = ((nei‘𝐽)‘𝑆))
334, 32eqtrd 2833 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wrex 3107  {crab 3110  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497   cuni 4800  cfv 6324  (class class class)co 7135  fBascfbas 20079  filGencfg 20080  Topctop 21498  neicnei 21702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-fbas 20088  df-fg 20089  df-top 21499  df-nei 21703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator