Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neifg Structured version   Visualization version   GIF version

Theorem neifg 36405
Description: The neighborhood filter of a nonempty set is generated by its open supersets. See comments for opnfbas 23752. (Contributed by Jeff Hankins, 3-Sep-2009.)
Hypothesis
Ref Expression
neifg.1 𝑋 = 𝐽
Assertion
Ref Expression
neifg ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = ((nei‘𝐽)‘𝑆))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem neifg
Dummy variables 𝑢 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neifg.1 . . . 4 𝑋 = 𝐽
21opnfbas 23752 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → {𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋))
3 fgval 23780 . . 3 ({𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅})
42, 3syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅})
5 pweq 4559 . . . . . . 7 (𝑡 = 𝑢 → 𝒫 𝑡 = 𝒫 𝑢)
65ineq2d 4165 . . . . . 6 (𝑡 = 𝑢 → ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) = ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢))
76neeq1d 2987 . . . . 5 (𝑡 = 𝑢 → (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅ ↔ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅))
87elrab 3642 . . . 4 (𝑢 ∈ {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅} ↔ (𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅))
9 velpw 4550 . . . . . . 7 (𝑢 ∈ 𝒫 𝑋𝑢𝑋)
109a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑢 ∈ 𝒫 𝑋𝑢𝑋))
11 n0 4298 . . . . . . . 8 (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢))
12 elin 3913 . . . . . . . . . 10 (𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ↔ (𝑧 ∈ {𝑥𝐽𝑆𝑥} ∧ 𝑧 ∈ 𝒫 𝑢))
13 sseq2 3956 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑆𝑥𝑆𝑧))
1413elrab 3642 . . . . . . . . . . 11 (𝑧 ∈ {𝑥𝐽𝑆𝑥} ↔ (𝑧𝐽𝑆𝑧))
15 velpw 4550 . . . . . . . . . . 11 (𝑧 ∈ 𝒫 𝑢𝑧𝑢)
1614, 15anbi12i 628 . . . . . . . . . 10 ((𝑧 ∈ {𝑥𝐽𝑆𝑥} ∧ 𝑧 ∈ 𝒫 𝑢) ↔ ((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
1712, 16bitri 275 . . . . . . . . 9 (𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ↔ ((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
1817exbii 1849 . . . . . . . 8 (∃𝑧 𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ↔ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
1911, 18bitri 275 . . . . . . 7 (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
2019a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢)))
2110, 20anbi12d 632 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅) ↔ (𝑢𝑋 ∧ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))))
22 anass 468 . . . . . . . . 9 (((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢) ↔ (𝑧𝐽 ∧ (𝑆𝑧𝑧𝑢)))
2322exbii 1849 . . . . . . . 8 (∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢) ↔ ∃𝑧(𝑧𝐽 ∧ (𝑆𝑧𝑧𝑢)))
24 df-rex 3057 . . . . . . . 8 (∃𝑧𝐽 (𝑆𝑧𝑧𝑢) ↔ ∃𝑧(𝑧𝐽 ∧ (𝑆𝑧𝑧𝑢)))
2523, 24bitr4i 278 . . . . . . 7 (∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢) ↔ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢))
2625anbi2i 623 . . . . . 6 ((𝑢𝑋 ∧ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢)) ↔ (𝑢𝑋 ∧ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢)))
271isnei 23013 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑢 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑢𝑋 ∧ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢))))
28273adant3 1132 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑢 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑢𝑋 ∧ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢))))
2926, 28bitr4id 290 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑢𝑋 ∧ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢)) ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆)))
3021, 29bitrd 279 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅) ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆)))
318, 30bitrid 283 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑢 ∈ {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅} ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆)))
3231eqrdv 2729 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅} = ((nei‘𝐽)‘𝑆))
334, 32eqtrd 2766 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  {crab 3395  cin 3896  wss 3897  c0 4278  𝒫 cpw 4545   cuni 4854  cfv 6476  (class class class)co 7341  fBascfbas 21274  filGencfg 21275  Topctop 22803  neicnei 23007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-fbas 21283  df-fg 21284  df-top 22804  df-nei 23008
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator