Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neifg Structured version   Visualization version   GIF version

Theorem neifg 35572
Description: The neighborhood filter of a nonempty set is generated by its open supersets. See comments for opnfbas 23579. (Contributed by Jeff Hankins, 3-Sep-2009.)
Hypothesis
Ref Expression
neifg.1 𝑋 = 𝐽
Assertion
Ref Expression
neifg ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = ((nei‘𝐽)‘𝑆))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem neifg
Dummy variables 𝑢 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neifg.1 . . . 4 𝑋 = 𝐽
21opnfbas 23579 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → {𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋))
3 fgval 23607 . . 3 ({𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅})
42, 3syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅})
5 pweq 4616 . . . . . . 7 (𝑡 = 𝑢 → 𝒫 𝑡 = 𝒫 𝑢)
65ineq2d 4212 . . . . . 6 (𝑡 = 𝑢 → ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) = ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢))
76neeq1d 2999 . . . . 5 (𝑡 = 𝑢 → (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅ ↔ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅))
87elrab 3683 . . . 4 (𝑢 ∈ {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅} ↔ (𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅))
9 velpw 4607 . . . . . . 7 (𝑢 ∈ 𝒫 𝑋𝑢𝑋)
109a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑢 ∈ 𝒫 𝑋𝑢𝑋))
11 n0 4346 . . . . . . . 8 (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢))
12 elin 3964 . . . . . . . . . 10 (𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ↔ (𝑧 ∈ {𝑥𝐽𝑆𝑥} ∧ 𝑧 ∈ 𝒫 𝑢))
13 sseq2 4008 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑆𝑥𝑆𝑧))
1413elrab 3683 . . . . . . . . . . 11 (𝑧 ∈ {𝑥𝐽𝑆𝑥} ↔ (𝑧𝐽𝑆𝑧))
15 velpw 4607 . . . . . . . . . . 11 (𝑧 ∈ 𝒫 𝑢𝑧𝑢)
1614, 15anbi12i 626 . . . . . . . . . 10 ((𝑧 ∈ {𝑥𝐽𝑆𝑥} ∧ 𝑧 ∈ 𝒫 𝑢) ↔ ((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
1712, 16bitri 275 . . . . . . . . 9 (𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ↔ ((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
1817exbii 1849 . . . . . . . 8 (∃𝑧 𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ↔ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
1911, 18bitri 275 . . . . . . 7 (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
2019a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢)))
2110, 20anbi12d 630 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅) ↔ (𝑢𝑋 ∧ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))))
22 anass 468 . . . . . . . . 9 (((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢) ↔ (𝑧𝐽 ∧ (𝑆𝑧𝑧𝑢)))
2322exbii 1849 . . . . . . . 8 (∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢) ↔ ∃𝑧(𝑧𝐽 ∧ (𝑆𝑧𝑧𝑢)))
24 df-rex 3070 . . . . . . . 8 (∃𝑧𝐽 (𝑆𝑧𝑧𝑢) ↔ ∃𝑧(𝑧𝐽 ∧ (𝑆𝑧𝑧𝑢)))
2523, 24bitr4i 278 . . . . . . 7 (∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢) ↔ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢))
2625anbi2i 622 . . . . . 6 ((𝑢𝑋 ∧ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢)) ↔ (𝑢𝑋 ∧ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢)))
271isnei 22840 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑢 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑢𝑋 ∧ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢))))
28273adant3 1131 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑢 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑢𝑋 ∧ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢))))
2926, 28bitr4id 290 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑢𝑋 ∧ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢)) ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆)))
3021, 29bitrd 279 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅) ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆)))
318, 30bitrid 283 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑢 ∈ {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅} ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆)))
3231eqrdv 2729 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅} = ((nei‘𝐽)‘𝑆))
334, 32eqtrd 2771 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wex 1780  wcel 2105  wne 2939  wrex 3069  {crab 3431  cin 3947  wss 3948  c0 4322  𝒫 cpw 4602   cuni 4908  cfv 6543  (class class class)co 7412  fBascfbas 21136  filGencfg 21137  Topctop 22628  neicnei 22834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-fbas 21145  df-fg 21146  df-top 22629  df-nei 22835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator