Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neifg Structured version   Visualization version   GIF version

Theorem neifg 32878
Description: The neighborhood filter of a nonempty set is generated by its open supersets. See comments for opnfbas 21974. (Contributed by Jeff Hankins, 3-Sep-2009.)
Hypothesis
Ref Expression
neifg.1 𝑋 = 𝐽
Assertion
Ref Expression
neifg ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = ((nei‘𝐽)‘𝑆))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem neifg
Dummy variables 𝑢 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neifg.1 . . . 4 𝑋 = 𝐽
21opnfbas 21974 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → {𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋))
3 fgval 22002 . . 3 ({𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅})
42, 3syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅})
5 pweq 4352 . . . . . . 7 (𝑡 = 𝑢 → 𝒫 𝑡 = 𝒫 𝑢)
65ineq2d 4012 . . . . . 6 (𝑡 = 𝑢 → ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) = ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢))
76neeq1d 3030 . . . . 5 (𝑡 = 𝑢 → (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅ ↔ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅))
87elrab 3556 . . . 4 (𝑢 ∈ {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅} ↔ (𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅))
9 selpw 4356 . . . . . . 7 (𝑢 ∈ 𝒫 𝑋𝑢𝑋)
109a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑢 ∈ 𝒫 𝑋𝑢𝑋))
11 n0 4131 . . . . . . . 8 (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢))
12 elin 3994 . . . . . . . . . 10 (𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ↔ (𝑧 ∈ {𝑥𝐽𝑆𝑥} ∧ 𝑧 ∈ 𝒫 𝑢))
13 sseq2 3823 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑆𝑥𝑆𝑧))
1413elrab 3556 . . . . . . . . . . 11 (𝑧 ∈ {𝑥𝐽𝑆𝑥} ↔ (𝑧𝐽𝑆𝑧))
15 selpw 4356 . . . . . . . . . . 11 (𝑧 ∈ 𝒫 𝑢𝑧𝑢)
1614, 15anbi12i 621 . . . . . . . . . 10 ((𝑧 ∈ {𝑥𝐽𝑆𝑥} ∧ 𝑧 ∈ 𝒫 𝑢) ↔ ((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
1712, 16bitri 267 . . . . . . . . 9 (𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ↔ ((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
1817exbii 1944 . . . . . . . 8 (∃𝑧 𝑧 ∈ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ↔ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
1911, 18bitri 267 . . . . . . 7 (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))
2019a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢)))
2110, 20anbi12d 625 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅) ↔ (𝑢𝑋 ∧ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢))))
221isnei 21236 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑢 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑢𝑋 ∧ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢))))
23223adant3 1163 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑢 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑢𝑋 ∧ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢))))
24 anass 461 . . . . . . . . 9 (((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢) ↔ (𝑧𝐽 ∧ (𝑆𝑧𝑧𝑢)))
2524exbii 1944 . . . . . . . 8 (∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢) ↔ ∃𝑧(𝑧𝐽 ∧ (𝑆𝑧𝑧𝑢)))
26 df-rex 3095 . . . . . . . 8 (∃𝑧𝐽 (𝑆𝑧𝑧𝑢) ↔ ∃𝑧(𝑧𝐽 ∧ (𝑆𝑧𝑧𝑢)))
2725, 26bitr4i 270 . . . . . . 7 (∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢) ↔ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢))
2827anbi2i 617 . . . . . 6 ((𝑢𝑋 ∧ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢)) ↔ (𝑢𝑋 ∧ ∃𝑧𝐽 (𝑆𝑧𝑧𝑢)))
2923, 28syl6rbbr 282 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑢𝑋 ∧ ∃𝑧((𝑧𝐽𝑆𝑧) ∧ 𝑧𝑢)) ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆)))
3021, 29bitrd 271 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → ((𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑢) ≠ ∅) ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆)))
318, 30syl5bb 275 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑢 ∈ {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅} ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆)))
3231eqrdv 2797 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥𝐽𝑆𝑥} ∩ 𝒫 𝑡) ≠ ∅} = ((nei‘𝐽)‘𝑆))
334, 32eqtrd 2833 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑋filGen{𝑥𝐽𝑆𝑥}) = ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wex 1875  wcel 2157  wne 2971  wrex 3090  {crab 3093  cin 3768  wss 3769  c0 4115  𝒫 cpw 4349   cuni 4628  cfv 6101  (class class class)co 6878  fBascfbas 20056  filGencfg 20057  Topctop 21026  neicnei 21230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-fbas 20065  df-fg 20066  df-top 21027  df-nei 21231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator