| Step | Hyp | Ref
| Expression |
| 1 | | neifg.1 |
. . . 4
⊢ 𝑋 = ∪
𝐽 |
| 2 | 1 | opnfbas 23850 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → {𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∈ (fBas‘𝑋)) |
| 3 | | fgval 23878 |
. . 3
⊢ ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∈ (fBas‘𝑋) → (𝑋filGen{𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥}) = {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑡) ≠ ∅}) |
| 4 | 2, 3 | syl 17 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → (𝑋filGen{𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥}) = {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑡) ≠ ∅}) |
| 5 | | pweq 4614 |
. . . . . . 7
⊢ (𝑡 = 𝑢 → 𝒫 𝑡 = 𝒫 𝑢) |
| 6 | 5 | ineq2d 4220 |
. . . . . 6
⊢ (𝑡 = 𝑢 → ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑡) = ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑢)) |
| 7 | 6 | neeq1d 3000 |
. . . . 5
⊢ (𝑡 = 𝑢 → (({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑡) ≠ ∅ ↔ ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑢) ≠ ∅)) |
| 8 | 7 | elrab 3692 |
. . . 4
⊢ (𝑢 ∈ {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑡) ≠ ∅} ↔ (𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑢) ≠ ∅)) |
| 9 | | velpw 4605 |
. . . . . . 7
⊢ (𝑢 ∈ 𝒫 𝑋 ↔ 𝑢 ⊆ 𝑋) |
| 10 | 9 | a1i 11 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → (𝑢 ∈ 𝒫 𝑋 ↔ 𝑢 ⊆ 𝑋)) |
| 11 | | n0 4353 |
. . . . . . . 8
⊢ (({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑢)) |
| 12 | | elin 3967 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑢) ↔ (𝑧 ∈ {𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∧ 𝑧 ∈ 𝒫 𝑢)) |
| 13 | | sseq2 4010 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑧)) |
| 14 | 13 | elrab 3692 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ {𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ↔ (𝑧 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑧)) |
| 15 | | velpw 4605 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝒫 𝑢 ↔ 𝑧 ⊆ 𝑢) |
| 16 | 14, 15 | anbi12i 628 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ {𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∧ 𝑧 ∈ 𝒫 𝑢) ↔ ((𝑧 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑧) ∧ 𝑧 ⊆ 𝑢)) |
| 17 | 12, 16 | bitri 275 |
. . . . . . . . 9
⊢ (𝑧 ∈ ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑢) ↔ ((𝑧 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑧) ∧ 𝑧 ⊆ 𝑢)) |
| 18 | 17 | exbii 1848 |
. . . . . . . 8
⊢
(∃𝑧 𝑧 ∈ ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑢) ↔ ∃𝑧((𝑧 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑧) ∧ 𝑧 ⊆ 𝑢)) |
| 19 | 11, 18 | bitri 275 |
. . . . . . 7
⊢ (({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧((𝑧 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑧) ∧ 𝑧 ⊆ 𝑢)) |
| 20 | 19 | a1i 11 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → (({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑧((𝑧 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑧) ∧ 𝑧 ⊆ 𝑢))) |
| 21 | 10, 20 | anbi12d 632 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → ((𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑢) ≠ ∅) ↔ (𝑢 ⊆ 𝑋 ∧ ∃𝑧((𝑧 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑧) ∧ 𝑧 ⊆ 𝑢)))) |
| 22 | | anass 468 |
. . . . . . . . 9
⊢ (((𝑧 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑧) ∧ 𝑧 ⊆ 𝑢) ↔ (𝑧 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑢))) |
| 23 | 22 | exbii 1848 |
. . . . . . . 8
⊢
(∃𝑧((𝑧 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑧) ∧ 𝑧 ⊆ 𝑢) ↔ ∃𝑧(𝑧 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑢))) |
| 24 | | df-rex 3071 |
. . . . . . . 8
⊢
(∃𝑧 ∈
𝐽 (𝑆 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑢) ↔ ∃𝑧(𝑧 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑢))) |
| 25 | 23, 24 | bitr4i 278 |
. . . . . . 7
⊢
(∃𝑧((𝑧 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑧) ∧ 𝑧 ⊆ 𝑢) ↔ ∃𝑧 ∈ 𝐽 (𝑆 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑢)) |
| 26 | 25 | anbi2i 623 |
. . . . . 6
⊢ ((𝑢 ⊆ 𝑋 ∧ ∃𝑧((𝑧 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑧) ∧ 𝑧 ⊆ 𝑢)) ↔ (𝑢 ⊆ 𝑋 ∧ ∃𝑧 ∈ 𝐽 (𝑆 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑢))) |
| 27 | 1 | isnei 23111 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑢 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑢 ⊆ 𝑋 ∧ ∃𝑧 ∈ 𝐽 (𝑆 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑢)))) |
| 28 | 27 | 3adant3 1133 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → (𝑢 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑢 ⊆ 𝑋 ∧ ∃𝑧 ∈ 𝐽 (𝑆 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑢)))) |
| 29 | 26, 28 | bitr4id 290 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → ((𝑢 ⊆ 𝑋 ∧ ∃𝑧((𝑧 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑧) ∧ 𝑧 ⊆ 𝑢)) ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆))) |
| 30 | 21, 29 | bitrd 279 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → ((𝑢 ∈ 𝒫 𝑋 ∧ ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑢) ≠ ∅) ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆))) |
| 31 | 8, 30 | bitrid 283 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → (𝑢 ∈ {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑡) ≠ ∅} ↔ 𝑢 ∈ ((nei‘𝐽)‘𝑆))) |
| 32 | 31 | eqrdv 2735 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → {𝑡 ∈ 𝒫 𝑋 ∣ ({𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥} ∩ 𝒫 𝑡) ≠ ∅} = ((nei‘𝐽)‘𝑆)) |
| 33 | 4, 32 | eqtrd 2777 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → (𝑋filGen{𝑥 ∈ 𝐽 ∣ 𝑆 ⊆ 𝑥}) = ((nei‘𝐽)‘𝑆)) |