MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfil3i Structured version   Visualization version   GIF version

Theorem cfil3i 24633
Description: A Cauchy filter contains balls of any pre-chosen size. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cfil3i ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝑥,𝑅   𝑥,𝐷

Proof of Theorem cfil3i
Dummy variables 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfili 24632 . . 3 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑠𝐹𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅)
213adant1 1130 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑠𝐹𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅)
3 cfilfil 24631 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋))
433adant3 1132 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → 𝐹 ∈ (Fil‘𝑋))
5 fileln0 23201 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠 ≠ ∅)
64, 5sylan 580 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → 𝑠 ≠ ∅)
7 r19.2z 4452 . . . . . 6 ((𝑠 ≠ ∅ ∧ ∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅) → ∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅)
87ex 413 . . . . 5 (𝑠 ≠ ∅ → (∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
96, 8syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
10 filelss 23203 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠𝑋)
114, 10sylan 580 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → 𝑠𝑋)
12 ssrexv 4011 . . . . 5 (𝑠𝑋 → (∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
1311, 12syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
14 dfss3 3932 . . . . . . 7 (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) ↔ ∀𝑦𝑠 𝑦 ∈ (𝑥(ball‘𝐷)𝑅))
15 simpl1 1191 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → 𝐷 ∈ (∞Met‘𝑋))
1615ad2antrr 724 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝐷 ∈ (∞Met‘𝑋))
17 simpll3 1214 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ+)
1817rpxrd 12958 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
1918adantr 481 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝑅 ∈ ℝ*)
20 simplr 767 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝑥𝑋)
2111adantr 481 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑠𝑋)
2221sselda 3944 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝑦𝑋)
23 elbl2 23743 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 ∈ (𝑥(ball‘𝐷)𝑅) ↔ (𝑥𝐷𝑦) < 𝑅))
2416, 19, 20, 22, 23syl22anc 837 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → (𝑦 ∈ (𝑥(ball‘𝐷)𝑅) ↔ (𝑥𝐷𝑦) < 𝑅))
2524ralbidva 3172 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (∀𝑦𝑠 𝑦 ∈ (𝑥(ball‘𝐷)𝑅) ↔ ∀𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
2614, 25bitrid 282 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) ↔ ∀𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
274ad2antrr 724 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝐹 ∈ (Fil‘𝑋))
28 simplr 767 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑠𝐹)
2915adantr 481 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
30 simpr 485 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑥𝑋)
31 blssm 23771 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑅 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
3229, 30, 18, 31syl3anc 1371 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
33 filss 23204 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑠𝐹 ∧ (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋𝑠 ⊆ (𝑥(ball‘𝐷)𝑅))) → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹)
34333exp2 1354 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑠𝐹 → ((𝑥(ball‘𝐷)𝑅) ⊆ 𝑋 → (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))))
3527, 28, 32, 34syl3c 66 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
3626, 35sylbird 259 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (∀𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
3736reximdva 3165 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∃𝑥𝑋𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
389, 13, 373syld 60 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
3938rexlimdva 3152 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → (∃𝑠𝐹𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
402, 39mpd 15 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wcel 2106  wne 2943  wral 3064  wrex 3073  wss 3910  c0 4282   class class class wbr 5105  cfv 6496  (class class class)co 7357  *cxr 11188   < clt 11189  +crp 12915  ∞Metcxmet 20781  ballcbl 20783  Filcfil 23196  CauFilccfil 24616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-2 12216  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13270  df-psmet 20788  df-xmet 20789  df-bl 20791  df-fbas 20793  df-fil 23197  df-cfil 24619
This theorem is referenced by:  iscfil3  24637  cfilfcls  24638  relcmpcmet  24682
  Copyright terms: Public domain W3C validator