MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfil3i Structured version   Visualization version   GIF version

Theorem cfil3i 25167
Description: A Cauchy filter contains balls of any pre-chosen size. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cfil3i ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝑥,𝑅   𝑥,𝐷

Proof of Theorem cfil3i
Dummy variables 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfili 25166 . . 3 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑠𝐹𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅)
213adant1 1130 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑠𝐹𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅)
3 cfilfil 25165 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋))
433adant3 1132 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → 𝐹 ∈ (Fil‘𝑋))
5 fileln0 23735 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠 ≠ ∅)
64, 5sylan 580 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → 𝑠 ≠ ∅)
7 r19.2z 4446 . . . . . 6 ((𝑠 ≠ ∅ ∧ ∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅) → ∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅)
87ex 412 . . . . 5 (𝑠 ≠ ∅ → (∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
96, 8syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
10 filelss 23737 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠𝑋)
114, 10sylan 580 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → 𝑠𝑋)
12 ssrexv 4005 . . . . 5 (𝑠𝑋 → (∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
1311, 12syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
14 dfss3 3924 . . . . . . 7 (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) ↔ ∀𝑦𝑠 𝑦 ∈ (𝑥(ball‘𝐷)𝑅))
15 simpl1 1192 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → 𝐷 ∈ (∞Met‘𝑋))
1615ad2antrr 726 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝐷 ∈ (∞Met‘𝑋))
17 simpll3 1215 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ+)
1817rpxrd 12938 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
1918adantr 480 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝑅 ∈ ℝ*)
20 simplr 768 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝑥𝑋)
2111adantr 480 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑠𝑋)
2221sselda 3935 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝑦𝑋)
23 elbl2 24276 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 ∈ (𝑥(ball‘𝐷)𝑅) ↔ (𝑥𝐷𝑦) < 𝑅))
2416, 19, 20, 22, 23syl22anc 838 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → (𝑦 ∈ (𝑥(ball‘𝐷)𝑅) ↔ (𝑥𝐷𝑦) < 𝑅))
2524ralbidva 3150 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (∀𝑦𝑠 𝑦 ∈ (𝑥(ball‘𝐷)𝑅) ↔ ∀𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
2614, 25bitrid 283 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) ↔ ∀𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
274ad2antrr 726 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝐹 ∈ (Fil‘𝑋))
28 simplr 768 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑠𝐹)
2915adantr 480 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
30 simpr 484 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑥𝑋)
31 blssm 24304 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑅 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
3229, 30, 18, 31syl3anc 1373 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
33 filss 23738 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑠𝐹 ∧ (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋𝑠 ⊆ (𝑥(ball‘𝐷)𝑅))) → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹)
34333exp2 1355 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑠𝐹 → ((𝑥(ball‘𝐷)𝑅) ⊆ 𝑋 → (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))))
3527, 28, 32, 34syl3c 66 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
3626, 35sylbird 260 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (∀𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
3736reximdva 3142 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∃𝑥𝑋𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
389, 13, 373syld 60 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
3938rexlimdva 3130 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → (∃𝑠𝐹𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
402, 39mpd 15 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3903  c0 4284   class class class wbr 5092  cfv 6482  (class class class)co 7349  *cxr 11148   < clt 11149  +crp 12893  ∞Metcxmet 21246  ballcbl 21248  Filcfil 23730  CauFilccfil 25150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-2 12191  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-psmet 21253  df-xmet 21254  df-bl 21256  df-fbas 21258  df-fil 23731  df-cfil 25153
This theorem is referenced by:  iscfil3  25171  cfilfcls  25172  relcmpcmet  25216
  Copyright terms: Public domain W3C validator