MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfil3i Structured version   Visualization version   GIF version

Theorem cfil3i 25196
Description: A Cauchy filter contains balls of any pre-chosen size. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cfil3i ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝑥,𝑅   𝑥,𝐷

Proof of Theorem cfil3i
Dummy variables 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfili 25195 . . 3 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑠𝐹𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅)
213adant1 1130 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑠𝐹𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅)
3 cfilfil 25194 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋))
433adant3 1132 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → 𝐹 ∈ (Fil‘𝑋))
5 fileln0 23765 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠 ≠ ∅)
64, 5sylan 580 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → 𝑠 ≠ ∅)
7 r19.2z 4442 . . . . . 6 ((𝑠 ≠ ∅ ∧ ∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅) → ∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅)
87ex 412 . . . . 5 (𝑠 ≠ ∅ → (∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
96, 8syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
10 filelss 23767 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠𝑋)
114, 10sylan 580 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → 𝑠𝑋)
12 ssrexv 3999 . . . . 5 (𝑠𝑋 → (∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
1311, 12syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
14 dfss3 3918 . . . . . . 7 (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) ↔ ∀𝑦𝑠 𝑦 ∈ (𝑥(ball‘𝐷)𝑅))
15 simpl1 1192 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → 𝐷 ∈ (∞Met‘𝑋))
1615ad2antrr 726 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝐷 ∈ (∞Met‘𝑋))
17 simpll3 1215 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ+)
1817rpxrd 12935 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
1918adantr 480 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝑅 ∈ ℝ*)
20 simplr 768 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝑥𝑋)
2111adantr 480 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑠𝑋)
2221sselda 3929 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝑦𝑋)
23 elbl2 24305 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 ∈ (𝑥(ball‘𝐷)𝑅) ↔ (𝑥𝐷𝑦) < 𝑅))
2416, 19, 20, 22, 23syl22anc 838 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → (𝑦 ∈ (𝑥(ball‘𝐷)𝑅) ↔ (𝑥𝐷𝑦) < 𝑅))
2524ralbidva 3153 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (∀𝑦𝑠 𝑦 ∈ (𝑥(ball‘𝐷)𝑅) ↔ ∀𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
2614, 25bitrid 283 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) ↔ ∀𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
274ad2antrr 726 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝐹 ∈ (Fil‘𝑋))
28 simplr 768 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑠𝐹)
2915adantr 480 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
30 simpr 484 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑥𝑋)
31 blssm 24333 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑅 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
3229, 30, 18, 31syl3anc 1373 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
33 filss 23768 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑠𝐹 ∧ (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋𝑠 ⊆ (𝑥(ball‘𝐷)𝑅))) → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹)
34333exp2 1355 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑠𝐹 → ((𝑥(ball‘𝐷)𝑅) ⊆ 𝑋 → (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))))
3527, 28, 32, 34syl3c 66 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
3626, 35sylbird 260 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (∀𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
3736reximdva 3145 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∃𝑥𝑋𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
389, 13, 373syld 60 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
3938rexlimdva 3133 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → (∃𝑠𝐹𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
402, 39mpd 15 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2111  wne 2928  wral 3047  wrex 3056  wss 3897  c0 4280   class class class wbr 5089  cfv 6481  (class class class)co 7346  *cxr 11145   < clt 11146  +crp 12890  ∞Metcxmet 21276  ballcbl 21278  Filcfil 23760  CauFilccfil 25179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-2 12188  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ico 13251  df-psmet 21283  df-xmet 21284  df-bl 21286  df-fbas 21288  df-fil 23761  df-cfil 25182
This theorem is referenced by:  iscfil3  25200  cfilfcls  25201  relcmpcmet  25245
  Copyright terms: Public domain W3C validator