MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfil3i Structured version   Visualization version   GIF version

Theorem cfil3i 25304
Description: A Cauchy filter contains balls of any pre-chosen size. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cfil3i ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝑥,𝑅   𝑥,𝐷

Proof of Theorem cfil3i
Dummy variables 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfili 25303 . . 3 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑠𝐹𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅)
213adant1 1130 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑠𝐹𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅)
3 cfilfil 25302 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋))
433adant3 1132 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → 𝐹 ∈ (Fil‘𝑋))
5 fileln0 23859 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠 ≠ ∅)
64, 5sylan 580 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → 𝑠 ≠ ∅)
7 r19.2z 4494 . . . . . 6 ((𝑠 ≠ ∅ ∧ ∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅) → ∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅)
87ex 412 . . . . 5 (𝑠 ≠ ∅ → (∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
96, 8syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
10 filelss 23861 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠𝑋)
114, 10sylan 580 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → 𝑠𝑋)
12 ssrexv 4052 . . . . 5 (𝑠𝑋 → (∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
1311, 12syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
14 dfss3 3971 . . . . . . 7 (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) ↔ ∀𝑦𝑠 𝑦 ∈ (𝑥(ball‘𝐷)𝑅))
15 simpl1 1191 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → 𝐷 ∈ (∞Met‘𝑋))
1615ad2antrr 726 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝐷 ∈ (∞Met‘𝑋))
17 simpll3 1214 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ+)
1817rpxrd 13079 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
1918adantr 480 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝑅 ∈ ℝ*)
20 simplr 768 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝑥𝑋)
2111adantr 480 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑠𝑋)
2221sselda 3982 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝑦𝑋)
23 elbl2 24401 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 ∈ (𝑥(ball‘𝐷)𝑅) ↔ (𝑥𝐷𝑦) < 𝑅))
2416, 19, 20, 22, 23syl22anc 838 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → (𝑦 ∈ (𝑥(ball‘𝐷)𝑅) ↔ (𝑥𝐷𝑦) < 𝑅))
2524ralbidva 3175 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (∀𝑦𝑠 𝑦 ∈ (𝑥(ball‘𝐷)𝑅) ↔ ∀𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
2614, 25bitrid 283 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) ↔ ∀𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
274ad2antrr 726 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝐹 ∈ (Fil‘𝑋))
28 simplr 768 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑠𝐹)
2915adantr 480 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
30 simpr 484 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑥𝑋)
31 blssm 24429 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑅 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
3229, 30, 18, 31syl3anc 1372 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
33 filss 23862 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑠𝐹 ∧ (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋𝑠 ⊆ (𝑥(ball‘𝐷)𝑅))) → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹)
34333exp2 1354 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑠𝐹 → ((𝑥(ball‘𝐷)𝑅) ⊆ 𝑋 → (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))))
3527, 28, 32, 34syl3c 66 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
3626, 35sylbird 260 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (∀𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
3736reximdva 3167 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∃𝑥𝑋𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
389, 13, 373syld 60 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
3938rexlimdva 3154 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → (∃𝑠𝐹𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
402, 39mpd 15 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2107  wne 2939  wral 3060  wrex 3069  wss 3950  c0 4332   class class class wbr 5142  cfv 6560  (class class class)co 7432  *cxr 11295   < clt 11296  +crp 13035  ∞Metcxmet 21350  ballcbl 21352  Filcfil 23854  CauFilccfil 25287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-2 12330  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ico 13394  df-psmet 21357  df-xmet 21358  df-bl 21360  df-fbas 21362  df-fil 23855  df-cfil 25290
This theorem is referenced by:  iscfil3  25308  cfilfcls  25309  relcmpcmet  25353
  Copyright terms: Public domain W3C validator