MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filsspw Structured version   Visualization version   GIF version

Theorem filsspw 23880
Description: A filter is a subset of the power set of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filsspw (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)

Proof of Theorem filsspw
StepHypRef Expression
1 filfbas 23877 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbsspw 23861 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
31, 2syl 17 1 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3976  𝒫 cpw 4622  cfv 6573  fBascfbas 21375  Filcfil 23874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-fbas 21384  df-fil 23875
This theorem is referenced by:  isfil2  23885  infil  23892  filunibas  23910  trfg  23920  isufil2  23937  filssufilg  23940  ssufl  23947  ufileu  23948  filufint  23949  uffixfr  23952  elflim  24000  fclsfnflim  24056  flimfnfcls  24057  metust  24592  cfilresi  25348  cmetss  25369
  Copyright terms: Public domain W3C validator