MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filsspw Structured version   Visualization version   GIF version

Theorem filsspw 23675
Description: A filter is a subset of the power set of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filsspw (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)

Proof of Theorem filsspw
StepHypRef Expression
1 filfbas 23672 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbsspw 23656 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
31, 2syl 17 1 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  wss 3948  𝒫 cpw 4602  cfv 6543  fBascfbas 21221  Filcfil 23669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-fbas 21230  df-fil 23670
This theorem is referenced by:  isfil2  23680  infil  23687  filunibas  23705  trfg  23715  isufil2  23732  filssufilg  23735  ssufl  23742  ufileu  23743  filufint  23744  uffixfr  23747  elflim  23795  fclsfnflim  23851  flimfnfcls  23852  metust  24387  cfilresi  25143  cmetss  25164
  Copyright terms: Public domain W3C validator