| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filsspw | Structured version Visualization version GIF version | ||
| Description: A filter is a subset of the power set of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filsspw | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas 23735 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 2 | fbsspw 23719 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 𝒫 cpw 4563 ‘cfv 6511 fBascfbas 21252 Filcfil 23732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-fbas 21261 df-fil 23733 |
| This theorem is referenced by: isfil2 23743 infil 23750 filunibas 23768 trfg 23778 isufil2 23795 filssufilg 23798 ssufl 23805 ufileu 23806 filufint 23807 uffixfr 23810 elflim 23858 fclsfnflim 23914 flimfnfcls 23915 metust 24446 cfilresi 25195 cmetss 25216 |
| Copyright terms: Public domain | W3C validator |