MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filsspw Structured version   Visualization version   GIF version

Theorem filsspw 23736
Description: A filter is a subset of the power set of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filsspw (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)

Proof of Theorem filsspw
StepHypRef Expression
1 filfbas 23733 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbsspw 23717 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
31, 2syl 17 1 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3903  𝒫 cpw 4551  cfv 6482  fBascfbas 21249  Filcfil 23730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fv 6490  df-fbas 21258  df-fil 23731
This theorem is referenced by:  isfil2  23741  infil  23748  filunibas  23766  trfg  23776  isufil2  23793  filssufilg  23796  ssufl  23803  ufileu  23804  filufint  23805  uffixfr  23808  elflim  23856  fclsfnflim  23912  flimfnfcls  23913  metust  24444  cfilresi  25193  cmetss  25214
  Copyright terms: Public domain W3C validator