| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextsdrg | Structured version Visualization version GIF version | ||
| Description: Deduce sub-division-ring from field extension. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextsdrg.1 | ⊢ 𝐵 = (Base‘𝐹) |
| fldextsdrg.2 | ⊢ (𝜑 → 𝐸/FldExt𝐹) |
| Ref | Expression |
|---|---|
| fldextsdrg | ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldextsdrg.2 | . . . 4 ⊢ (𝜑 → 𝐸/FldExt𝐹) | |
| 2 | fldextfld1 33626 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Field) |
| 4 | 3 | flddrngd 20708 | . 2 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 5 | fldextsdrg.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
| 6 | 5 | fldextsubrg 33628 | . . 3 ⊢ (𝐸/FldExt𝐹 → 𝐵 ∈ (SubRing‘𝐸)) |
| 7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝐸)) |
| 8 | fldextress 33630 | . . . . . 6 ⊢ (𝐸/FldExt𝐹 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) | |
| 9 | 1, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) |
| 10 | 5 | oveq2i 7423 | . . . . 5 ⊢ (𝐸 ↾s 𝐵) = (𝐸 ↾s (Base‘𝐹)) |
| 11 | 9, 10 | eqtr4di 2787 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝐸 ↾s 𝐵)) |
| 12 | fldextfld2 33627 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | |
| 13 | 1, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Field) |
| 14 | 11, 13 | eqeltrrd 2834 | . . 3 ⊢ (𝜑 → (𝐸 ↾s 𝐵) ∈ Field) |
| 15 | 14 | flddrngd 20708 | . 2 ⊢ (𝜑 → (𝐸 ↾s 𝐵) ∈ DivRing) |
| 16 | issdrg 20756 | . 2 ⊢ (𝐵 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐵) ∈ DivRing)) | |
| 17 | 4, 7, 15, 16 | syl3anbrc 1343 | 1 ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6540 (class class class)co 7412 Basecbs 17228 ↾s cress 17251 SubRingcsubrg 20536 DivRingcdr 20696 Fieldcfield 20697 SubDRingcsdrg 20754 /FldExtcfldext 33615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fv 6548 df-ov 7415 df-field 20699 df-sdrg 20755 df-fldext 33619 |
| This theorem is referenced by: constrext2chnlem 33721 |
| Copyright terms: Public domain | W3C validator |