Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextsdrg Structured version   Visualization version   GIF version

Theorem fldextsdrg 33631
Description: Deduce sub-division-ring from field extension. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
fldextsdrg.1 𝐵 = (Base‘𝐹)
fldextsdrg.2 (𝜑𝐸/FldExt𝐹)
Assertion
Ref Expression
fldextsdrg (𝜑𝐵 ∈ (SubDRing‘𝐸))

Proof of Theorem fldextsdrg
StepHypRef Expression
1 fldextsdrg.2 . . . 4 (𝜑𝐸/FldExt𝐹)
2 fldextfld1 33624 . . . 4 (𝐸/FldExt𝐹𝐸 ∈ Field)
31, 2syl 17 . . 3 (𝜑𝐸 ∈ Field)
43flddrngd 20688 . 2 (𝜑𝐸 ∈ DivRing)
5 fldextsdrg.1 . . . 4 𝐵 = (Base‘𝐹)
65fldextsubrg 33626 . . 3 (𝐸/FldExt𝐹𝐵 ∈ (SubRing‘𝐸))
71, 6syl 17 . 2 (𝜑𝐵 ∈ (SubRing‘𝐸))
8 fldextress 33628 . . . . . 6 (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
91, 8syl 17 . . . . 5 (𝜑𝐹 = (𝐸s (Base‘𝐹)))
105oveq2i 7411 . . . . 5 (𝐸s 𝐵) = (𝐸s (Base‘𝐹))
119, 10eqtr4di 2787 . . . 4 (𝜑𝐹 = (𝐸s 𝐵))
12 fldextfld2 33625 . . . . 5 (𝐸/FldExt𝐹𝐹 ∈ Field)
131, 12syl 17 . . . 4 (𝜑𝐹 ∈ Field)
1411, 13eqeltrrd 2834 . . 3 (𝜑 → (𝐸s 𝐵) ∈ Field)
1514flddrngd 20688 . 2 (𝜑 → (𝐸s 𝐵) ∈ DivRing)
16 issdrg 20735 . 2 (𝐵 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐵) ∈ DivRing))
174, 7, 15, 16syl3anbrc 1343 1 (𝜑𝐵 ∈ (SubDRing‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107   class class class wbr 5117  cfv 6528  (class class class)co 7400  Basecbs 17215  s cress 17238  SubRingcsubrg 20516  DivRingcdr 20676  Fieldcfield 20677  SubDRingcsdrg 20733  /FldExtcfldext 33613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fv 6536  df-ov 7403  df-field 20679  df-sdrg 20734  df-fldext 33617
This theorem is referenced by:  constrext2chnlem  33719
  Copyright terms: Public domain W3C validator