Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextsdrg Structured version   Visualization version   GIF version

Theorem fldextsdrg 33678
Description: Deduce sub-division-ring from field extension. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
fldextsdrg.1 𝐵 = (Base‘𝐹)
fldextsdrg.2 (𝜑𝐸/FldExt𝐹)
Assertion
Ref Expression
fldextsdrg (𝜑𝐵 ∈ (SubDRing‘𝐸))

Proof of Theorem fldextsdrg
StepHypRef Expression
1 fldextsdrg.2 . . . 4 (𝜑𝐸/FldExt𝐹)
2 fldextfld1 33671 . . . 4 (𝐸/FldExt𝐹𝐸 ∈ Field)
31, 2syl 17 . . 3 (𝜑𝐸 ∈ Field)
43flddrngd 20666 . 2 (𝜑𝐸 ∈ DivRing)
5 fldextsdrg.1 . . . 4 𝐵 = (Base‘𝐹)
65fldextsubrg 33673 . . 3 (𝐸/FldExt𝐹𝐵 ∈ (SubRing‘𝐸))
71, 6syl 17 . 2 (𝜑𝐵 ∈ (SubRing‘𝐸))
8 fldextress 33675 . . . . . 6 (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
91, 8syl 17 . . . . 5 (𝜑𝐹 = (𝐸s (Base‘𝐹)))
105oveq2i 7366 . . . . 5 (𝐸s 𝐵) = (𝐸s (Base‘𝐹))
119, 10eqtr4di 2786 . . . 4 (𝜑𝐹 = (𝐸s 𝐵))
12 fldextfld2 33672 . . . . 5 (𝐸/FldExt𝐹𝐹 ∈ Field)
131, 12syl 17 . . . 4 (𝜑𝐹 ∈ Field)
1411, 13eqeltrrd 2834 . . 3 (𝜑 → (𝐸s 𝐵) ∈ Field)
1514flddrngd 20666 . 2 (𝜑 → (𝐸s 𝐵) ∈ DivRing)
16 issdrg 20713 . 2 (𝐵 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐵) ∈ DivRing))
174, 7, 15, 16syl3anbrc 1344 1 (𝜑𝐵 ∈ (SubDRing‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17130  s cress 17151  SubRingcsubrg 20494  DivRingcdr 20654  Fieldcfield 20655  SubDRingcsdrg 20711  /FldExtcfldext 33662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-field 20657  df-sdrg 20712  df-fldext 33665
This theorem is referenced by:  finextalg  33722  constrext2chnlem  33774
  Copyright terms: Public domain W3C validator