Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextsdrg Structured version   Visualization version   GIF version

Theorem fldextsdrg 33650
Description: Deduce sub-division-ring from field extension. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
fldextsdrg.1 𝐵 = (Base‘𝐹)
fldextsdrg.2 (𝜑𝐸/FldExt𝐹)
Assertion
Ref Expression
fldextsdrg (𝜑𝐵 ∈ (SubDRing‘𝐸))

Proof of Theorem fldextsdrg
StepHypRef Expression
1 fldextsdrg.2 . . . 4 (𝜑𝐸/FldExt𝐹)
2 fldextfld1 33643 . . . 4 (𝐸/FldExt𝐹𝐸 ∈ Field)
31, 2syl 17 . . 3 (𝜑𝐸 ∈ Field)
43flddrngd 20650 . 2 (𝜑𝐸 ∈ DivRing)
5 fldextsdrg.1 . . . 4 𝐵 = (Base‘𝐹)
65fldextsubrg 33645 . . 3 (𝐸/FldExt𝐹𝐵 ∈ (SubRing‘𝐸))
71, 6syl 17 . 2 (𝜑𝐵 ∈ (SubRing‘𝐸))
8 fldextress 33647 . . . . . 6 (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
91, 8syl 17 . . . . 5 (𝜑𝐹 = (𝐸s (Base‘𝐹)))
105oveq2i 7398 . . . . 5 (𝐸s 𝐵) = (𝐸s (Base‘𝐹))
119, 10eqtr4di 2782 . . . 4 (𝜑𝐹 = (𝐸s 𝐵))
12 fldextfld2 33644 . . . . 5 (𝐸/FldExt𝐹𝐹 ∈ Field)
131, 12syl 17 . . . 4 (𝜑𝐹 ∈ Field)
1411, 13eqeltrrd 2829 . . 3 (𝜑 → (𝐸s 𝐵) ∈ Field)
1514flddrngd 20650 . 2 (𝜑 → (𝐸s 𝐵) ∈ DivRing)
16 issdrg 20697 . 2 (𝐵 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐵) ∈ DivRing))
174, 7, 15, 16syl3anbrc 1344 1 (𝜑𝐵 ∈ (SubDRing‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  SubRingcsubrg 20478  DivRingcdr 20638  Fieldcfield 20639  SubDRingcsdrg 20695  /FldExtcfldext 33634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-field 20641  df-sdrg 20696  df-fldext 33637
This theorem is referenced by:  constrext2chnlem  33740
  Copyright terms: Public domain W3C validator