Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextsdrg Structured version   Visualization version   GIF version

Theorem fldextsdrg 33657
Description: Deduce sub-division-ring from field extension. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
fldextsdrg.1 𝐵 = (Base‘𝐹)
fldextsdrg.2 (𝜑𝐸/FldExt𝐹)
Assertion
Ref Expression
fldextsdrg (𝜑𝐵 ∈ (SubDRing‘𝐸))

Proof of Theorem fldextsdrg
StepHypRef Expression
1 fldextsdrg.2 . . . 4 (𝜑𝐸/FldExt𝐹)
2 fldextfld1 33650 . . . 4 (𝐸/FldExt𝐹𝐸 ∈ Field)
31, 2syl 17 . . 3 (𝜑𝐸 ∈ Field)
43flddrngd 20649 . 2 (𝜑𝐸 ∈ DivRing)
5 fldextsdrg.1 . . . 4 𝐵 = (Base‘𝐹)
65fldextsubrg 33652 . . 3 (𝐸/FldExt𝐹𝐵 ∈ (SubRing‘𝐸))
71, 6syl 17 . 2 (𝜑𝐵 ∈ (SubRing‘𝐸))
8 fldextress 33654 . . . . . 6 (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
91, 8syl 17 . . . . 5 (𝜑𝐹 = (𝐸s (Base‘𝐹)))
105oveq2i 7352 . . . . 5 (𝐸s 𝐵) = (𝐸s (Base‘𝐹))
119, 10eqtr4di 2783 . . . 4 (𝜑𝐹 = (𝐸s 𝐵))
12 fldextfld2 33651 . . . . 5 (𝐸/FldExt𝐹𝐹 ∈ Field)
131, 12syl 17 . . . 4 (𝜑𝐹 ∈ Field)
1411, 13eqeltrrd 2830 . . 3 (𝜑 → (𝐸s 𝐵) ∈ Field)
1514flddrngd 20649 . 2 (𝜑 → (𝐸s 𝐵) ∈ DivRing)
16 issdrg 20696 . 2 (𝐵 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐵) ∈ DivRing))
174, 7, 15, 16syl3anbrc 1344 1 (𝜑𝐵 ∈ (SubDRing‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110   class class class wbr 5089  cfv 6477  (class class class)co 7341  Basecbs 17112  s cress 17133  SubRingcsubrg 20477  DivRingcdr 20637  Fieldcfield 20638  SubDRingcsdrg 20694  /FldExtcfldext 33641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-field 20640  df-sdrg 20695  df-fldext 33644
This theorem is referenced by:  finextalg  33701  constrext2chnlem  33753
  Copyright terms: Public domain W3C validator