Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextsdrg Structured version   Visualization version   GIF version

Theorem fldextsdrg 33658
Description: Deduce sub-division-ring from field extension. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
fldextsdrg.1 𝐵 = (Base‘𝐹)
fldextsdrg.2 (𝜑𝐸/FldExt𝐹)
Assertion
Ref Expression
fldextsdrg (𝜑𝐵 ∈ (SubDRing‘𝐸))

Proof of Theorem fldextsdrg
StepHypRef Expression
1 fldextsdrg.2 . . . 4 (𝜑𝐸/FldExt𝐹)
2 fldextfld1 33651 . . . 4 (𝐸/FldExt𝐹𝐸 ∈ Field)
31, 2syl 17 . . 3 (𝜑𝐸 ∈ Field)
43flddrngd 20656 . 2 (𝜑𝐸 ∈ DivRing)
5 fldextsdrg.1 . . . 4 𝐵 = (Base‘𝐹)
65fldextsubrg 33653 . . 3 (𝐸/FldExt𝐹𝐵 ∈ (SubRing‘𝐸))
71, 6syl 17 . 2 (𝜑𝐵 ∈ (SubRing‘𝐸))
8 fldextress 33655 . . . . . 6 (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
91, 8syl 17 . . . . 5 (𝜑𝐹 = (𝐸s (Base‘𝐹)))
105oveq2i 7405 . . . . 5 (𝐸s 𝐵) = (𝐸s (Base‘𝐹))
119, 10eqtr4di 2783 . . . 4 (𝜑𝐹 = (𝐸s 𝐵))
12 fldextfld2 33652 . . . . 5 (𝐸/FldExt𝐹𝐹 ∈ Field)
131, 12syl 17 . . . 4 (𝜑𝐹 ∈ Field)
1411, 13eqeltrrd 2830 . . 3 (𝜑 → (𝐸s 𝐵) ∈ Field)
1514flddrngd 20656 . 2 (𝜑 → (𝐸s 𝐵) ∈ DivRing)
16 issdrg 20703 . 2 (𝐵 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐵) ∈ DivRing))
174, 7, 15, 16syl3anbrc 1344 1 (𝜑𝐵 ∈ (SubDRing‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5115  cfv 6519  (class class class)co 7394  Basecbs 17185  s cress 17206  SubRingcsubrg 20484  DivRingcdr 20644  Fieldcfield 20645  SubDRingcsdrg 20701  /FldExtcfldext 33642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fv 6527  df-ov 7397  df-field 20647  df-sdrg 20702  df-fldext 33645
This theorem is referenced by:  constrext2chnlem  33748
  Copyright terms: Public domain W3C validator