| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextsdrg | Structured version Visualization version GIF version | ||
| Description: Deduce sub-division-ring from field extension. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextsdrg.1 | ⊢ 𝐵 = (Base‘𝐹) |
| fldextsdrg.2 | ⊢ (𝜑 → 𝐸/FldExt𝐹) |
| Ref | Expression |
|---|---|
| fldextsdrg | ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldextsdrg.2 | . . . 4 ⊢ (𝜑 → 𝐸/FldExt𝐹) | |
| 2 | fldextfld1 33651 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Field) |
| 4 | 3 | flddrngd 20656 | . 2 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 5 | fldextsdrg.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
| 6 | 5 | fldextsubrg 33653 | . . 3 ⊢ (𝐸/FldExt𝐹 → 𝐵 ∈ (SubRing‘𝐸)) |
| 7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝐸)) |
| 8 | fldextress 33655 | . . . . . 6 ⊢ (𝐸/FldExt𝐹 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) | |
| 9 | 1, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) |
| 10 | 5 | oveq2i 7405 | . . . . 5 ⊢ (𝐸 ↾s 𝐵) = (𝐸 ↾s (Base‘𝐹)) |
| 11 | 9, 10 | eqtr4di 2783 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝐸 ↾s 𝐵)) |
| 12 | fldextfld2 33652 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | |
| 13 | 1, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Field) |
| 14 | 11, 13 | eqeltrrd 2830 | . . 3 ⊢ (𝜑 → (𝐸 ↾s 𝐵) ∈ Field) |
| 15 | 14 | flddrngd 20656 | . 2 ⊢ (𝜑 → (𝐸 ↾s 𝐵) ∈ DivRing) |
| 16 | issdrg 20703 | . 2 ⊢ (𝐵 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐵) ∈ DivRing)) | |
| 17 | 4, 7, 15, 16 | syl3anbrc 1344 | 1 ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 ↾s cress 17206 SubRingcsubrg 20484 DivRingcdr 20644 Fieldcfield 20645 SubDRingcsdrg 20701 /FldExtcfldext 33642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-field 20647 df-sdrg 20702 df-fldext 33645 |
| This theorem is referenced by: constrext2chnlem 33748 |
| Copyright terms: Public domain | W3C validator |