| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextsdrg | Structured version Visualization version GIF version | ||
| Description: Deduce sub-division-ring from field extension. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextsdrg.1 | ⊢ 𝐵 = (Base‘𝐹) |
| fldextsdrg.2 | ⊢ (𝜑 → 𝐸/FldExt𝐹) |
| Ref | Expression |
|---|---|
| fldextsdrg | ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldextsdrg.2 | . . . 4 ⊢ (𝜑 → 𝐸/FldExt𝐹) | |
| 2 | fldextfld1 33650 | . . . 4 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Field) |
| 4 | 3 | flddrngd 20649 | . 2 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 5 | fldextsdrg.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
| 6 | 5 | fldextsubrg 33652 | . . 3 ⊢ (𝐸/FldExt𝐹 → 𝐵 ∈ (SubRing‘𝐸)) |
| 7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝐸)) |
| 8 | fldextress 33654 | . . . . . 6 ⊢ (𝐸/FldExt𝐹 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) | |
| 9 | 1, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) |
| 10 | 5 | oveq2i 7352 | . . . . 5 ⊢ (𝐸 ↾s 𝐵) = (𝐸 ↾s (Base‘𝐹)) |
| 11 | 9, 10 | eqtr4di 2783 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝐸 ↾s 𝐵)) |
| 12 | fldextfld2 33651 | . . . . 5 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | |
| 13 | 1, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Field) |
| 14 | 11, 13 | eqeltrrd 2830 | . . 3 ⊢ (𝜑 → (𝐸 ↾s 𝐵) ∈ Field) |
| 15 | 14 | flddrngd 20649 | . 2 ⊢ (𝜑 → (𝐸 ↾s 𝐵) ∈ DivRing) |
| 16 | issdrg 20696 | . 2 ⊢ (𝐵 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐵) ∈ DivRing)) | |
| 17 | 4, 7, 15, 16 | syl3anbrc 1344 | 1 ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 ↾s cress 17133 SubRingcsubrg 20477 DivRingcdr 20637 Fieldcfield 20638 SubDRingcsdrg 20694 /FldExtcfldext 33641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fv 6485 df-ov 7344 df-field 20640 df-sdrg 20695 df-fldext 33644 |
| This theorem is referenced by: finextalg 33701 constrext2chnlem 33753 |
| Copyright terms: Public domain | W3C validator |