MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fviss Structured version   Visualization version   GIF version

Theorem fviss 6904
Description: The value of the identity function is a subset of the argument. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 27-Feb-2016.)
Assertion
Ref Expression
fviss ( I ‘𝐴) ⊆ 𝐴

Proof of Theorem fviss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 ∈ ( I ‘𝐴) → 𝑥 ∈ ( I ‘𝐴))
2 elfvex 6862 . . . 4 (𝑥 ∈ ( I ‘𝐴) → 𝐴 ∈ V)
3 fvi 6903 . . . 4 (𝐴 ∈ V → ( I ‘𝐴) = 𝐴)
42, 3syl 17 . . 3 (𝑥 ∈ ( I ‘𝐴) → ( I ‘𝐴) = 𝐴)
51, 4eleqtrd 2830 . 2 (𝑥 ∈ ( I ‘𝐴) → 𝑥𝐴)
65ssriv 3941 1 ( I ‘𝐴) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905   I cid 5517  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494
This theorem is referenced by:  efglem  19613  efgtf  19619  efgtlen  19623  efginvrel2  19624  efginvrel1  19625  efgsfo  19636  efgredlemg  19639  efgredleme  19640  efgredlemd  19641  efgredlemc  19642  efgredlem  19644  efgred  19645  efgcpbllemb  19652  frgpinv  19661  frgpuplem  19669  frgpupf  19670  frgpup1  19672
  Copyright terms: Public domain W3C validator