MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fviss Structured version   Visualization version   GIF version

Theorem fviss 6920
Description: The value of the identity function is a subset of the argument. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 27-Feb-2016.)
Assertion
Ref Expression
fviss ( I ‘𝐴) ⊆ 𝐴

Proof of Theorem fviss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 ∈ ( I ‘𝐴) → 𝑥 ∈ ( I ‘𝐴))
2 elfvex 6878 . . . 4 (𝑥 ∈ ( I ‘𝐴) → 𝐴 ∈ V)
3 fvi 6919 . . . 4 (𝐴 ∈ V → ( I ‘𝐴) = 𝐴)
42, 3syl 17 . . 3 (𝑥 ∈ ( I ‘𝐴) → ( I ‘𝐴) = 𝐴)
51, 4eleqtrd 2830 . 2 (𝑥 ∈ ( I ‘𝐴) → 𝑥𝐴)
65ssriv 3947 1 ( I ‘𝐴) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911   I cid 5525  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507
This theorem is referenced by:  efglem  19622  efgtf  19628  efgtlen  19632  efginvrel2  19633  efginvrel1  19634  efgsfo  19645  efgredlemg  19648  efgredleme  19649  efgredlemd  19650  efgredlemc  19651  efgredlem  19653  efgred  19654  efgcpbllemb  19661  frgpinv  19670  frgpuplem  19678  frgpupf  19679  frgpup1  19681
  Copyright terms: Public domain W3C validator