| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fviss | Structured version Visualization version GIF version | ||
| Description: The value of the identity function is a subset of the argument. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| fviss | ⊢ ( I ‘𝐴) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑥 ∈ ( I ‘𝐴) → 𝑥 ∈ ( I ‘𝐴)) | |
| 2 | elfvex 6852 | . . . 4 ⊢ (𝑥 ∈ ( I ‘𝐴) → 𝐴 ∈ V) | |
| 3 | fvi 6893 | . . . 4 ⊢ (𝐴 ∈ V → ( I ‘𝐴) = 𝐴) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑥 ∈ ( I ‘𝐴) → ( I ‘𝐴) = 𝐴) |
| 5 | 1, 4 | eleqtrd 2833 | . 2 ⊢ (𝑥 ∈ ( I ‘𝐴) → 𝑥 ∈ 𝐴) |
| 6 | 5 | ssriv 3933 | 1 ⊢ ( I ‘𝐴) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 I cid 5505 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 |
| This theorem is referenced by: efglem 19623 efgtf 19629 efgtlen 19633 efginvrel2 19634 efginvrel1 19635 efgsfo 19646 efgredlemg 19649 efgredleme 19650 efgredlemd 19651 efgredlemc 19652 efgredlem 19654 efgred 19655 efgcpbllemb 19662 frgpinv 19671 frgpuplem 19679 frgpupf 19680 frgpup1 19682 |
| Copyright terms: Public domain | W3C validator |