| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fviss | Structured version Visualization version GIF version | ||
| Description: The value of the identity function is a subset of the argument. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| fviss | ⊢ ( I ‘𝐴) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑥 ∈ ( I ‘𝐴) → 𝑥 ∈ ( I ‘𝐴)) | |
| 2 | elfvex 6878 | . . . 4 ⊢ (𝑥 ∈ ( I ‘𝐴) → 𝐴 ∈ V) | |
| 3 | fvi 6919 | . . . 4 ⊢ (𝐴 ∈ V → ( I ‘𝐴) = 𝐴) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑥 ∈ ( I ‘𝐴) → ( I ‘𝐴) = 𝐴) |
| 5 | 1, 4 | eleqtrd 2830 | . 2 ⊢ (𝑥 ∈ ( I ‘𝐴) → 𝑥 ∈ 𝐴) |
| 6 | 5 | ssriv 3947 | 1 ⊢ ( I ‘𝐴) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 I cid 5525 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 |
| This theorem is referenced by: efglem 19622 efgtf 19628 efgtlen 19632 efginvrel2 19633 efginvrel1 19634 efgsfo 19645 efgredlemg 19648 efgredleme 19649 efgredlemd 19650 efgredlemc 19651 efgredlem 19653 efgred 19654 efgcpbllemb 19661 frgpinv 19670 frgpuplem 19678 frgpupf 19679 frgpup1 19681 |
| Copyright terms: Public domain | W3C validator |