| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fviss | Structured version Visualization version GIF version | ||
| Description: The value of the identity function is a subset of the argument. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| fviss | ⊢ ( I ‘𝐴) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑥 ∈ ( I ‘𝐴) → 𝑥 ∈ ( I ‘𝐴)) | |
| 2 | elfvex 6919 | . . . 4 ⊢ (𝑥 ∈ ( I ‘𝐴) → 𝐴 ∈ V) | |
| 3 | fvi 6960 | . . . 4 ⊢ (𝐴 ∈ V → ( I ‘𝐴) = 𝐴) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑥 ∈ ( I ‘𝐴) → ( I ‘𝐴) = 𝐴) |
| 5 | 1, 4 | eleqtrd 2837 | . 2 ⊢ (𝑥 ∈ ( I ‘𝐴) → 𝑥 ∈ 𝐴) |
| 6 | 5 | ssriv 3967 | 1 ⊢ ( I ‘𝐴) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 I cid 5552 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 |
| This theorem is referenced by: efglem 19702 efgtf 19708 efgtlen 19712 efginvrel2 19713 efginvrel1 19714 efgsfo 19725 efgredlemg 19728 efgredleme 19729 efgredlemd 19730 efgredlemc 19731 efgredlem 19733 efgred 19734 efgcpbllemb 19741 frgpinv 19750 frgpuplem 19758 frgpupf 19759 frgpup1 19761 |
| Copyright terms: Public domain | W3C validator |