| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fviss | Structured version Visualization version GIF version | ||
| Description: The value of the identity function is a subset of the argument. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| fviss | ⊢ ( I ‘𝐴) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑥 ∈ ( I ‘𝐴) → 𝑥 ∈ ( I ‘𝐴)) | |
| 2 | elfvex 6862 | . . . 4 ⊢ (𝑥 ∈ ( I ‘𝐴) → 𝐴 ∈ V) | |
| 3 | fvi 6903 | . . . 4 ⊢ (𝐴 ∈ V → ( I ‘𝐴) = 𝐴) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑥 ∈ ( I ‘𝐴) → ( I ‘𝐴) = 𝐴) |
| 5 | 1, 4 | eleqtrd 2830 | . 2 ⊢ (𝑥 ∈ ( I ‘𝐴) → 𝑥 ∈ 𝐴) |
| 6 | 5 | ssriv 3941 | 1 ⊢ ( I ‘𝐴) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 I cid 5517 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 |
| This theorem is referenced by: efglem 19613 efgtf 19619 efgtlen 19623 efginvrel2 19624 efginvrel1 19625 efgsfo 19636 efgredlemg 19639 efgredleme 19640 efgredlemd 19641 efgredlemc 19642 efgredlem 19644 efgred 19645 efgcpbllemb 19652 frgpinv 19661 frgpuplem 19669 frgpupf 19670 frgpup1 19672 |
| Copyright terms: Public domain | W3C validator |