MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fviss Structured version   Visualization version   GIF version

Theorem fviss 6938
Description: The value of the identity function is a subset of the argument. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 27-Feb-2016.)
Assertion
Ref Expression
fviss ( I ‘𝐴) ⊆ 𝐴

Proof of Theorem fviss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 ∈ ( I ‘𝐴) → 𝑥 ∈ ( I ‘𝐴))
2 elfvex 6896 . . . 4 (𝑥 ∈ ( I ‘𝐴) → 𝐴 ∈ V)
3 fvi 6937 . . . 4 (𝐴 ∈ V → ( I ‘𝐴) = 𝐴)
42, 3syl 17 . . 3 (𝑥 ∈ ( I ‘𝐴) → ( I ‘𝐴) = 𝐴)
51, 4eleqtrd 2830 . 2 (𝑥 ∈ ( I ‘𝐴) → 𝑥𝐴)
65ssriv 3950 1 ( I ‘𝐴) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914   I cid 5532  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519
This theorem is referenced by:  efglem  19646  efgtf  19652  efgtlen  19656  efginvrel2  19657  efginvrel1  19658  efgsfo  19669  efgredlemg  19672  efgredleme  19673  efgredlemd  19674  efgredlemc  19675  efgredlem  19677  efgred  19678  efgcpbllemb  19685  frgpinv  19694  frgpuplem  19702  frgpupf  19703  frgpup1  19705
  Copyright terms: Public domain W3C validator