Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fviss | Structured version Visualization version GIF version |
Description: The value of the identity function is a subset of the argument. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
fviss | ⊢ ( I ‘𝐴) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑥 ∈ ( I ‘𝐴) → 𝑥 ∈ ( I ‘𝐴)) | |
2 | elfvex 6789 | . . . 4 ⊢ (𝑥 ∈ ( I ‘𝐴) → 𝐴 ∈ V) | |
3 | fvi 6826 | . . . 4 ⊢ (𝐴 ∈ V → ( I ‘𝐴) = 𝐴) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑥 ∈ ( I ‘𝐴) → ( I ‘𝐴) = 𝐴) |
5 | 1, 4 | eleqtrd 2841 | . 2 ⊢ (𝑥 ∈ ( I ‘𝐴) → 𝑥 ∈ 𝐴) |
6 | 5 | ssriv 3921 | 1 ⊢ ( I ‘𝐴) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 I cid 5479 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: efglem 19237 efgtf 19243 efgtlen 19247 efginvrel2 19248 efginvrel1 19249 efgsfo 19260 efgredlemg 19263 efgredleme 19264 efgredlemd 19265 efgredlemc 19266 efgredlem 19268 efgred 19269 efgcpbllemb 19276 frgpinv 19285 frgpuplem 19293 frgpupf 19294 frgpup1 19296 |
Copyright terms: Public domain | W3C validator |