Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  s2rn Structured version   Visualization version   GIF version

Theorem s2rn 31849
Description: Range of a length 2 string. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
s2rn.i (𝜑𝐼𝐷)
s2rn.j (𝜑𝐽𝐷)
Assertion
Ref Expression
s2rn (𝜑 → ran ⟨“𝐼𝐽”⟩ = {𝐼, 𝐽})

Proof of Theorem s2rn
StepHypRef Expression
1 imadmrn 6024 . 2 (⟨“𝐼𝐽”⟩ “ dom ⟨“𝐼𝐽”⟩) = ran ⟨“𝐼𝐽”⟩
2 s2rn.i . . . . . . 7 (𝜑𝐼𝐷)
3 s2rn.j . . . . . . 7 (𝜑𝐽𝐷)
42, 3s2cld 14766 . . . . . 6 (𝜑 → ⟨“𝐼𝐽”⟩ ∈ Word 𝐷)
5 wrdfn 14422 . . . . . 6 (⟨“𝐼𝐽”⟩ ∈ Word 𝐷 → ⟨“𝐼𝐽”⟩ Fn (0..^(♯‘⟨“𝐼𝐽”⟩)))
6 s2len 14784 . . . . . . . . . 10 (♯‘⟨“𝐼𝐽”⟩) = 2
76oveq2i 7369 . . . . . . . . 9 (0..^(♯‘⟨“𝐼𝐽”⟩)) = (0..^2)
8 fzo0to2pr 13663 . . . . . . . . 9 (0..^2) = {0, 1}
97, 8eqtri 2761 . . . . . . . 8 (0..^(♯‘⟨“𝐼𝐽”⟩)) = {0, 1}
109fneq2i 6601 . . . . . . 7 (⟨“𝐼𝐽”⟩ Fn (0..^(♯‘⟨“𝐼𝐽”⟩)) ↔ ⟨“𝐼𝐽”⟩ Fn {0, 1})
1110biimpi 215 . . . . . 6 (⟨“𝐼𝐽”⟩ Fn (0..^(♯‘⟨“𝐼𝐽”⟩)) → ⟨“𝐼𝐽”⟩ Fn {0, 1})
124, 5, 113syl 18 . . . . 5 (𝜑 → ⟨“𝐼𝐽”⟩ Fn {0, 1})
1312fndmd 6608 . . . 4 (𝜑 → dom ⟨“𝐼𝐽”⟩ = {0, 1})
1413imaeq2d 6014 . . 3 (𝜑 → (⟨“𝐼𝐽”⟩ “ dom ⟨“𝐼𝐽”⟩) = (⟨“𝐼𝐽”⟩ “ {0, 1}))
15 c0ex 11154 . . . . . 6 0 ∈ V
1615prid1 4724 . . . . 5 0 ∈ {0, 1}
1716a1i 11 . . . 4 (𝜑 → 0 ∈ {0, 1})
18 1ex 11156 . . . . . 6 1 ∈ V
1918prid2 4725 . . . . 5 1 ∈ {0, 1}
2019a1i 11 . . . 4 (𝜑 → 1 ∈ {0, 1})
21 fnimapr 6926 . . . 4 ((⟨“𝐼𝐽”⟩ Fn {0, 1} ∧ 0 ∈ {0, 1} ∧ 1 ∈ {0, 1}) → (⟨“𝐼𝐽”⟩ “ {0, 1}) = {(⟨“𝐼𝐽”⟩‘0), (⟨“𝐼𝐽”⟩‘1)})
2212, 17, 20, 21syl3anc 1372 . . 3 (𝜑 → (⟨“𝐼𝐽”⟩ “ {0, 1}) = {(⟨“𝐼𝐽”⟩‘0), (⟨“𝐼𝐽”⟩‘1)})
23 s2fv0 14782 . . . . 5 (𝐼𝐷 → (⟨“𝐼𝐽”⟩‘0) = 𝐼)
242, 23syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽”⟩‘0) = 𝐼)
25 s2fv1 14783 . . . . 5 (𝐽𝐷 → (⟨“𝐼𝐽”⟩‘1) = 𝐽)
263, 25syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽”⟩‘1) = 𝐽)
2724, 26preq12d 4703 . . 3 (𝜑 → {(⟨“𝐼𝐽”⟩‘0), (⟨“𝐼𝐽”⟩‘1)} = {𝐼, 𝐽})
2814, 22, 273eqtrd 2777 . 2 (𝜑 → (⟨“𝐼𝐽”⟩ “ dom ⟨“𝐼𝐽”⟩) = {𝐼, 𝐽})
291, 28eqtr3id 2787 1 (𝜑 → ran ⟨“𝐼𝐽”⟩ = {𝐼, 𝐽})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {cpr 4589  dom cdm 5634  ran crn 5635  cima 5637   Fn wfn 6492  cfv 6497  (class class class)co 7358  0cc0 11056  1c1 11057  2c2 12213  ..^cfzo 13573  chash 14236  Word cword 14408  ⟨“cs2 14736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-fzo 13574  df-hash 14237  df-word 14409  df-concat 14465  df-s1 14490  df-s2 14743
This theorem is referenced by:  cycpm2tr  32017  cycpmco2  32031  cyc2fvx  32032  cyc3co2  32038  cyc3conja  32055
  Copyright terms: Public domain W3C validator