Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  s2rn Structured version   Visualization version   GIF version

Theorem s2rn 30656
 Description: Range of a length 2 string. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
s2rn.i (𝜑𝐼𝐷)
s2rn.j (𝜑𝐽𝐷)
Assertion
Ref Expression
s2rn (𝜑 → ran ⟨“𝐼𝐽”⟩ = {𝐼, 𝐽})

Proof of Theorem s2rn
StepHypRef Expression
1 imadmrn 5907 . 2 (⟨“𝐼𝐽”⟩ “ dom ⟨“𝐼𝐽”⟩) = ran ⟨“𝐼𝐽”⟩
2 s2rn.i . . . . . . 7 (𝜑𝐼𝐷)
3 s2rn.j . . . . . . 7 (𝜑𝐽𝐷)
42, 3s2cld 14227 . . . . . 6 (𝜑 → ⟨“𝐼𝐽”⟩ ∈ Word 𝐷)
5 wrdfn 13874 . . . . . 6 (⟨“𝐼𝐽”⟩ ∈ Word 𝐷 → ⟨“𝐼𝐽”⟩ Fn (0..^(♯‘⟨“𝐼𝐽”⟩)))
6 s2len 14245 . . . . . . . . . 10 (♯‘⟨“𝐼𝐽”⟩) = 2
76oveq2i 7147 . . . . . . . . 9 (0..^(♯‘⟨“𝐼𝐽”⟩)) = (0..^2)
8 fzo0to2pr 13120 . . . . . . . . 9 (0..^2) = {0, 1}
97, 8eqtri 2821 . . . . . . . 8 (0..^(♯‘⟨“𝐼𝐽”⟩)) = {0, 1}
109fneq2i 6422 . . . . . . 7 (⟨“𝐼𝐽”⟩ Fn (0..^(♯‘⟨“𝐼𝐽”⟩)) ↔ ⟨“𝐼𝐽”⟩ Fn {0, 1})
1110biimpi 219 . . . . . 6 (⟨“𝐼𝐽”⟩ Fn (0..^(♯‘⟨“𝐼𝐽”⟩)) → ⟨“𝐼𝐽”⟩ Fn {0, 1})
124, 5, 113syl 18 . . . . 5 (𝜑 → ⟨“𝐼𝐽”⟩ Fn {0, 1})
1312fndmd 6428 . . . 4 (𝜑 → dom ⟨“𝐼𝐽”⟩ = {0, 1})
1413imaeq2d 5897 . . 3 (𝜑 → (⟨“𝐼𝐽”⟩ “ dom ⟨“𝐼𝐽”⟩) = (⟨“𝐼𝐽”⟩ “ {0, 1}))
15 c0ex 10627 . . . . . 6 0 ∈ V
1615prid1 4658 . . . . 5 0 ∈ {0, 1}
1716a1i 11 . . . 4 (𝜑 → 0 ∈ {0, 1})
18 1ex 10629 . . . . . 6 1 ∈ V
1918prid2 4659 . . . . 5 1 ∈ {0, 1}
2019a1i 11 . . . 4 (𝜑 → 1 ∈ {0, 1})
21 fnimapr 6723 . . . 4 ((⟨“𝐼𝐽”⟩ Fn {0, 1} ∧ 0 ∈ {0, 1} ∧ 1 ∈ {0, 1}) → (⟨“𝐼𝐽”⟩ “ {0, 1}) = {(⟨“𝐼𝐽”⟩‘0), (⟨“𝐼𝐽”⟩‘1)})
2212, 17, 20, 21syl3anc 1368 . . 3 (𝜑 → (⟨“𝐼𝐽”⟩ “ {0, 1}) = {(⟨“𝐼𝐽”⟩‘0), (⟨“𝐼𝐽”⟩‘1)})
23 s2fv0 14243 . . . . 5 (𝐼𝐷 → (⟨“𝐼𝐽”⟩‘0) = 𝐼)
242, 23syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽”⟩‘0) = 𝐼)
25 s2fv1 14244 . . . . 5 (𝐽𝐷 → (⟨“𝐼𝐽”⟩‘1) = 𝐽)
263, 25syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽”⟩‘1) = 𝐽)
2724, 26preq12d 4637 . . 3 (𝜑 → {(⟨“𝐼𝐽”⟩‘0), (⟨“𝐼𝐽”⟩‘1)} = {𝐼, 𝐽})
2814, 22, 273eqtrd 2837 . 2 (𝜑 → (⟨“𝐼𝐽”⟩ “ dom ⟨“𝐼𝐽”⟩) = {𝐼, 𝐽})
291, 28syl5eqr 2847 1 (𝜑 → ran ⟨“𝐼𝐽”⟩ = {𝐼, 𝐽})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  {cpr 4527  dom cdm 5520  ran crn 5521   “ cima 5523   Fn wfn 6320  ‘cfv 6325  (class class class)co 7136  0cc0 10529  1c1 10530  2c2 11683  ..^cfzo 13031  ♯chash 13689  Word cword 13860  ⟨“cs2 14197 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889  df-fzo 13032  df-hash 13690  df-word 13861  df-concat 13917  df-s1 13944  df-s2 14204 This theorem is referenced by:  cycpm2tr  30821  cycpmco2  30835  cyc2fvx  30836  cyc3co2  30842  cyc3conja  30859
 Copyright terms: Public domain W3C validator