Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > s2rn | Structured version Visualization version GIF version |
Description: Range of a length 2 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
Ref | Expression |
---|---|
s2rn.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
s2rn.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
Ref | Expression |
---|---|
s2rn | ⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 5979 | . 2 ⊢ (〈“𝐼𝐽”〉 “ dom 〈“𝐼𝐽”〉) = ran 〈“𝐼𝐽”〉 | |
2 | s2rn.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
3 | s2rn.j | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
4 | 2, 3 | s2cld 14584 | . . . . . 6 ⊢ (𝜑 → 〈“𝐼𝐽”〉 ∈ Word 𝐷) |
5 | wrdfn 14231 | . . . . . 6 ⊢ (〈“𝐼𝐽”〉 ∈ Word 𝐷 → 〈“𝐼𝐽”〉 Fn (0..^(♯‘〈“𝐼𝐽”〉))) | |
6 | s2len 14602 | . . . . . . . . . 10 ⊢ (♯‘〈“𝐼𝐽”〉) = 2 | |
7 | 6 | oveq2i 7286 | . . . . . . . . 9 ⊢ (0..^(♯‘〈“𝐼𝐽”〉)) = (0..^2) |
8 | fzo0to2pr 13472 | . . . . . . . . 9 ⊢ (0..^2) = {0, 1} | |
9 | 7, 8 | eqtri 2766 | . . . . . . . 8 ⊢ (0..^(♯‘〈“𝐼𝐽”〉)) = {0, 1} |
10 | 9 | fneq2i 6531 | . . . . . . 7 ⊢ (〈“𝐼𝐽”〉 Fn (0..^(♯‘〈“𝐼𝐽”〉)) ↔ 〈“𝐼𝐽”〉 Fn {0, 1}) |
11 | 10 | biimpi 215 | . . . . . 6 ⊢ (〈“𝐼𝐽”〉 Fn (0..^(♯‘〈“𝐼𝐽”〉)) → 〈“𝐼𝐽”〉 Fn {0, 1}) |
12 | 4, 5, 11 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 〈“𝐼𝐽”〉 Fn {0, 1}) |
13 | 12 | fndmd 6538 | . . . 4 ⊢ (𝜑 → dom 〈“𝐼𝐽”〉 = {0, 1}) |
14 | 13 | imaeq2d 5969 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽”〉 “ dom 〈“𝐼𝐽”〉) = (〈“𝐼𝐽”〉 “ {0, 1})) |
15 | c0ex 10969 | . . . . . 6 ⊢ 0 ∈ V | |
16 | 15 | prid1 4698 | . . . . 5 ⊢ 0 ∈ {0, 1} |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ {0, 1}) |
18 | 1ex 10971 | . . . . . 6 ⊢ 1 ∈ V | |
19 | 18 | prid2 4699 | . . . . 5 ⊢ 1 ∈ {0, 1} |
20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ {0, 1}) |
21 | fnimapr 6852 | . . . 4 ⊢ ((〈“𝐼𝐽”〉 Fn {0, 1} ∧ 0 ∈ {0, 1} ∧ 1 ∈ {0, 1}) → (〈“𝐼𝐽”〉 “ {0, 1}) = {(〈“𝐼𝐽”〉‘0), (〈“𝐼𝐽”〉‘1)}) | |
22 | 12, 17, 20, 21 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽”〉 “ {0, 1}) = {(〈“𝐼𝐽”〉‘0), (〈“𝐼𝐽”〉‘1)}) |
23 | s2fv0 14600 | . . . . 5 ⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽”〉‘0) = 𝐼) | |
24 | 2, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘0) = 𝐼) |
25 | s2fv1 14601 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽”〉‘1) = 𝐽) | |
26 | 3, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘1) = 𝐽) |
27 | 24, 26 | preq12d 4677 | . . 3 ⊢ (𝜑 → {(〈“𝐼𝐽”〉‘0), (〈“𝐼𝐽”〉‘1)} = {𝐼, 𝐽}) |
28 | 14, 22, 27 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽”〉 “ dom 〈“𝐼𝐽”〉) = {𝐼, 𝐽}) |
29 | 1, 28 | eqtr3id 2792 | 1 ⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {cpr 4563 dom cdm 5589 ran crn 5590 “ cima 5592 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 2c2 12028 ..^cfzo 13382 ♯chash 14044 Word cword 14217 〈“cs2 14554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-s2 14561 |
This theorem is referenced by: cycpm2tr 31386 cycpmco2 31400 cyc2fvx 31401 cyc3co2 31407 cyc3conja 31424 |
Copyright terms: Public domain | W3C validator |