MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frnsuppeqg Structured version   Visualization version   GIF version

Theorem frnsuppeqg 7856
Description: Version of frnsuppeq 7855 avoiding ax-rep 5160 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 30-Jul-2024.)
Assertion
Ref Expression
frnsuppeqg ((𝐹𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))

Proof of Theorem frnsuppeqg
StepHypRef Expression
1 suppimacnv 7854 . . 3 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
2 invdif 4175 . . . . 5 (𝑆 ∩ (V ∖ {𝑍})) = (𝑆 ∖ {𝑍})
32imaeq2i 5904 . . . 4 (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (𝐹 “ (𝑆 ∖ {𝑍}))
4 ffun 6506 . . . . . 6 (𝐹:𝐼𝑆 → Fun 𝐹)
5 inpreima 6830 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))))
64, 5syl 17 . . . . 5 (𝐹:𝐼𝑆 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))))
7 cnvimass 5926 . . . . . . 7 (𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹
8 fdm 6511 . . . . . . . 8 (𝐹:𝐼𝑆 → dom 𝐹 = 𝐼)
9 fimacnv 6836 . . . . . . . 8 (𝐹:𝐼𝑆 → (𝐹𝑆) = 𝐼)
108, 9eqtr4d 2796 . . . . . . 7 (𝐹:𝐼𝑆 → dom 𝐹 = (𝐹𝑆))
117, 10sseqtrid 3946 . . . . . 6 (𝐹:𝐼𝑆 → (𝐹 “ (V ∖ {𝑍})) ⊆ (𝐹𝑆))
12 sseqin2 4122 . . . . . 6 ((𝐹 “ (V ∖ {𝑍})) ⊆ (𝐹𝑆) ↔ ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
1311, 12sylib 221 . . . . 5 (𝐹:𝐼𝑆 → ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
146, 13eqtrd 2793 . . . 4 (𝐹:𝐼𝑆 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
153, 14syl5reqr 2808 . . 3 (𝐹:𝐼𝑆 → (𝐹 “ (V ∖ {𝑍})) = (𝐹 “ (𝑆 ∖ {𝑍})))
161, 15sylan9eq 2813 . 2 (((𝐹𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍})))
1716ex 416 1 ((𝐹𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3409  cdif 3857  cin 3859  wss 3860  {csn 4525  ccnv 5527  dom cdm 5528  cima 5531  Fun wfun 6334  wf 6336  (class class class)co 7156   supp csupp 7841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-supp 7842
This theorem is referenced by:  frnnn0suppg  12005
  Copyright terms: Public domain W3C validator