MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frnsuppeqg Structured version   Visualization version   GIF version

Theorem frnsuppeqg 7992
Description: Version of frnsuppeq 7991 avoiding ax-rep 5209 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 30-Jul-2024.)
Assertion
Ref Expression
frnsuppeqg ((𝐹𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))

Proof of Theorem frnsuppeqg
StepHypRef Expression
1 suppimacnv 7990 . . 3 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
2 ffun 6603 . . . . . 6 (𝐹:𝐼𝑆 → Fun 𝐹)
3 inpreima 6941 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))))
42, 3syl 17 . . . . 5 (𝐹:𝐼𝑆 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))))
5 cnvimass 5989 . . . . . . 7 (𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹
6 fdm 6609 . . . . . . . 8 (𝐹:𝐼𝑆 → dom 𝐹 = 𝐼)
7 fimacnv 6622 . . . . . . . 8 (𝐹:𝐼𝑆 → (𝐹𝑆) = 𝐼)
86, 7eqtr4d 2781 . . . . . . 7 (𝐹:𝐼𝑆 → dom 𝐹 = (𝐹𝑆))
95, 8sseqtrid 3973 . . . . . 6 (𝐹:𝐼𝑆 → (𝐹 “ (V ∖ {𝑍})) ⊆ (𝐹𝑆))
10 sseqin2 4149 . . . . . 6 ((𝐹 “ (V ∖ {𝑍})) ⊆ (𝐹𝑆) ↔ ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
119, 10sylib 217 . . . . 5 (𝐹:𝐼𝑆 → ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
124, 11eqtrd 2778 . . . 4 (𝐹:𝐼𝑆 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
13 invdif 4202 . . . . 5 (𝑆 ∩ (V ∖ {𝑍})) = (𝑆 ∖ {𝑍})
1413imaeq2i 5967 . . . 4 (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (𝐹 “ (𝑆 ∖ {𝑍}))
1512, 14eqtr3di 2793 . . 3 (𝐹:𝐼𝑆 → (𝐹 “ (V ∖ {𝑍})) = (𝐹 “ (𝑆 ∖ {𝑍})))
161, 15sylan9eq 2798 . 2 (((𝐹𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍})))
1716ex 413 1 ((𝐹𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  cin 3886  wss 3887  {csn 4561  ccnv 5588  dom cdm 5589  cima 5592  Fun wfun 6427  wf 6429  (class class class)co 7275   supp csupp 7977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-supp 7978
This theorem is referenced by:  frnnn0suppg  12291
  Copyright terms: Public domain W3C validator