MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frnsuppeqg Structured version   Visualization version   GIF version

Theorem frnsuppeqg 7979
Description: Version of frnsuppeq 7978 avoiding ax-rep 5208 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 30-Jul-2024.)
Assertion
Ref Expression
frnsuppeqg ((𝐹𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))

Proof of Theorem frnsuppeqg
StepHypRef Expression
1 suppimacnv 7977 . . 3 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
2 ffun 6595 . . . . . 6 (𝐹:𝐼𝑆 → Fun 𝐹)
3 inpreima 6933 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))))
42, 3syl 17 . . . . 5 (𝐹:𝐼𝑆 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))))
5 cnvimass 5982 . . . . . . 7 (𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹
6 fdm 6601 . . . . . . . 8 (𝐹:𝐼𝑆 → dom 𝐹 = 𝐼)
7 fimacnv 6614 . . . . . . . 8 (𝐹:𝐼𝑆 → (𝐹𝑆) = 𝐼)
86, 7eqtr4d 2781 . . . . . . 7 (𝐹:𝐼𝑆 → dom 𝐹 = (𝐹𝑆))
95, 8sseqtrid 3972 . . . . . 6 (𝐹:𝐼𝑆 → (𝐹 “ (V ∖ {𝑍})) ⊆ (𝐹𝑆))
10 sseqin2 4149 . . . . . 6 ((𝐹 “ (V ∖ {𝑍})) ⊆ (𝐹𝑆) ↔ ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
119, 10sylib 217 . . . . 5 (𝐹:𝐼𝑆 → ((𝐹𝑆) ∩ (𝐹 “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
124, 11eqtrd 2778 . . . 4 (𝐹:𝐼𝑆 → (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
13 invdif 4202 . . . . 5 (𝑆 ∩ (V ∖ {𝑍})) = (𝑆 ∖ {𝑍})
1413imaeq2i 5960 . . . 4 (𝐹 “ (𝑆 ∩ (V ∖ {𝑍}))) = (𝐹 “ (𝑆 ∖ {𝑍}))
1512, 14eqtr3di 2793 . . 3 (𝐹:𝐼𝑆 → (𝐹 “ (V ∖ {𝑍})) = (𝐹 “ (𝑆 ∖ {𝑍})))
161, 15sylan9eq 2798 . 2 (((𝐹𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍})))
1716ex 413 1 ((𝐹𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3429  cdif 3883  cin 3885  wss 3886  {csn 4561  ccnv 5583  dom cdm 5584  cima 5587  Fun wfun 6420  wf 6422  (class class class)co 7267   supp csupp 7964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3431  df-sbc 3716  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-opab 5136  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-supp 7965
This theorem is referenced by:  frnnn0suppg  12301
  Copyright terms: Public domain W3C validator