Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesprm Structured version   Visualization version   GIF version

Theorem nnsum3primesprm 45209
Description: Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020.) (Proof shortened by AV, 17-Apr-2021.)
Assertion
Ref Expression
nnsum3primesprm (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑃,𝑑,𝑓,𝑘

Proof of Theorem nnsum3primesprm
StepHypRef Expression
1 1nn 11982 . 2 1 ∈ ℕ
2 1zzd 12349 . . . . 5 (𝑃 ∈ ℙ → 1 ∈ ℤ)
3 id 22 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℙ)
42, 3fsnd 6761 . . . 4 (𝑃 ∈ ℙ → {⟨1, 𝑃⟩}:{1}⟶ℙ)
5 prmex 16380 . . . . 5 ℙ ∈ V
6 snex 5356 . . . . 5 {1} ∈ V
75, 6elmap 8657 . . . 4 ({⟨1, 𝑃⟩} ∈ (ℙ ↑m {1}) ↔ {⟨1, 𝑃⟩}:{1}⟶ℙ)
84, 7sylibr 233 . . 3 (𝑃 ∈ ℙ → {⟨1, 𝑃⟩} ∈ (ℙ ↑m {1}))
9 1re 10973 . . . . . . 7 1 ∈ ℝ
10 simpl 483 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → 𝑃 ∈ ℙ)
11 fvsng 7054 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑃 ∈ ℙ) → ({⟨1, 𝑃⟩}‘1) = 𝑃)
129, 10, 11sylancr 587 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → ({⟨1, 𝑃⟩}‘1) = 𝑃)
1312sumeq2dv 15413 . . . . 5 (𝑃 ∈ ℙ → Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1) = Σ𝑘 ∈ {1}𝑃)
14 prmz 16378 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1514zcnd 12425 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
16 eqidd 2739 . . . . . . 7 (𝑘 = 1 → 𝑃 = 𝑃)
1716sumsn 15456 . . . . . 6 ((1 ∈ ℝ ∧ 𝑃 ∈ ℂ) → Σ𝑘 ∈ {1}𝑃 = 𝑃)
189, 15, 17sylancr 587 . . . . 5 (𝑃 ∈ ℙ → Σ𝑘 ∈ {1}𝑃 = 𝑃)
1913, 18eqtr2d 2779 . . . 4 (𝑃 ∈ ℙ → 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))
20 1le3 12183 . . . 4 1 ≤ 3
2119, 20jctil 520 . . 3 (𝑃 ∈ ℙ → (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1)))
22 simpl 483 . . . . . . . 8 ((𝑓 = {⟨1, 𝑃⟩} ∧ 𝑘 ∈ {1}) → 𝑓 = {⟨1, 𝑃⟩})
23 elsni 4580 . . . . . . . . 9 (𝑘 ∈ {1} → 𝑘 = 1)
2423adantl 482 . . . . . . . 8 ((𝑓 = {⟨1, 𝑃⟩} ∧ 𝑘 ∈ {1}) → 𝑘 = 1)
2522, 24fveq12d 6783 . . . . . . 7 ((𝑓 = {⟨1, 𝑃⟩} ∧ 𝑘 ∈ {1}) → (𝑓𝑘) = ({⟨1, 𝑃⟩}‘1))
2625sumeq2dv 15413 . . . . . 6 (𝑓 = {⟨1, 𝑃⟩} → Σ𝑘 ∈ {1} (𝑓𝑘) = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))
2726eqeq2d 2749 . . . . 5 (𝑓 = {⟨1, 𝑃⟩} → (𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1)))
2827anbi2d 629 . . . 4 (𝑓 = {⟨1, 𝑃⟩} → ((1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))))
2928rspcev 3561 . . 3 (({⟨1, 𝑃⟩} ∈ (ℙ ↑m {1}) ∧ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))) → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)))
308, 21, 29syl2anc 584 . 2 (𝑃 ∈ ℙ → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)))
31 oveq2 7285 . . . . . 6 (𝑑 = 1 → (1...𝑑) = (1...1))
32 1z 12348 . . . . . . 7 1 ∈ ℤ
33 fzsn 13296 . . . . . . 7 (1 ∈ ℤ → (1...1) = {1})
3432, 33ax-mp 5 . . . . . 6 (1...1) = {1}
3531, 34eqtrdi 2794 . . . . 5 (𝑑 = 1 → (1...𝑑) = {1})
3635oveq2d 7293 . . . 4 (𝑑 = 1 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m {1}))
37 breq1 5079 . . . . 5 (𝑑 = 1 → (𝑑 ≤ 3 ↔ 1 ≤ 3))
3835sumeq1d 15411 . . . . . 6 (𝑑 = 1 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ {1} (𝑓𝑘))
3938eqeq2d 2749 . . . . 5 (𝑑 = 1 → (𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)))
4037, 39anbi12d 631 . . . 4 (𝑑 = 1 → ((𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘))))
4136, 40rexeqbidv 3336 . . 3 (𝑑 = 1 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘))))
4241rspcev 3561 . 2 ((1 ∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
431, 30, 42sylancr 587 1 (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  {csn 4563  cop 4569   class class class wbr 5076  wf 6431  cfv 6435  (class class class)co 7277  m cmap 8613  cc 10867  cr 10868  1c1 10870  cle 11008  cn 11971  3c3 12027  cz 12317  ...cfz 13237  Σcsu 15395  cprime 16374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-inf2 9397  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946  ax-pre-sup 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-isom 6444  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-er 8496  df-map 8615  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-sup 9199  df-oi 9267  df-card 9695  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-n0 12232  df-z 12318  df-uz 12581  df-rp 12729  df-fz 13238  df-fzo 13381  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-sum 15396  df-prm 16375
This theorem is referenced by:  nnsum4primesprm  45210  nnsum3primesle9  45213
  Copyright terms: Public domain W3C validator