Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesprm Structured version   Visualization version   GIF version

Theorem nnsum3primesprm 44869
Description: Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020.) (Proof shortened by AV, 17-Apr-2021.)
Assertion
Ref Expression
nnsum3primesprm (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑃,𝑑,𝑓,𝑘

Proof of Theorem nnsum3primesprm
StepHypRef Expression
1 1nn 11824 . 2 1 ∈ ℕ
2 1zzd 12191 . . . . 5 (𝑃 ∈ ℙ → 1 ∈ ℤ)
3 id 22 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℙ)
42, 3fsnd 6692 . . . 4 (𝑃 ∈ ℙ → {⟨1, 𝑃⟩}:{1}⟶ℙ)
5 prmex 16215 . . . . 5 ℙ ∈ V
6 snex 5313 . . . . 5 {1} ∈ V
75, 6elmap 8541 . . . 4 ({⟨1, 𝑃⟩} ∈ (ℙ ↑m {1}) ↔ {⟨1, 𝑃⟩}:{1}⟶ℙ)
84, 7sylibr 237 . . 3 (𝑃 ∈ ℙ → {⟨1, 𝑃⟩} ∈ (ℙ ↑m {1}))
9 1re 10816 . . . . . . 7 1 ∈ ℝ
10 simpl 486 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → 𝑃 ∈ ℙ)
11 fvsng 6984 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑃 ∈ ℙ) → ({⟨1, 𝑃⟩}‘1) = 𝑃)
129, 10, 11sylancr 590 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → ({⟨1, 𝑃⟩}‘1) = 𝑃)
1312sumeq2dv 15250 . . . . 5 (𝑃 ∈ ℙ → Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1) = Σ𝑘 ∈ {1}𝑃)
14 prmz 16213 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1514zcnd 12266 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
16 eqidd 2735 . . . . . . 7 (𝑘 = 1 → 𝑃 = 𝑃)
1716sumsn 15291 . . . . . 6 ((1 ∈ ℝ ∧ 𝑃 ∈ ℂ) → Σ𝑘 ∈ {1}𝑃 = 𝑃)
189, 15, 17sylancr 590 . . . . 5 (𝑃 ∈ ℙ → Σ𝑘 ∈ {1}𝑃 = 𝑃)
1913, 18eqtr2d 2775 . . . 4 (𝑃 ∈ ℙ → 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))
20 1le3 12025 . . . 4 1 ≤ 3
2119, 20jctil 523 . . 3 (𝑃 ∈ ℙ → (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1)))
22 simpl 486 . . . . . . . 8 ((𝑓 = {⟨1, 𝑃⟩} ∧ 𝑘 ∈ {1}) → 𝑓 = {⟨1, 𝑃⟩})
23 elsni 4548 . . . . . . . . 9 (𝑘 ∈ {1} → 𝑘 = 1)
2423adantl 485 . . . . . . . 8 ((𝑓 = {⟨1, 𝑃⟩} ∧ 𝑘 ∈ {1}) → 𝑘 = 1)
2522, 24fveq12d 6713 . . . . . . 7 ((𝑓 = {⟨1, 𝑃⟩} ∧ 𝑘 ∈ {1}) → (𝑓𝑘) = ({⟨1, 𝑃⟩}‘1))
2625sumeq2dv 15250 . . . . . 6 (𝑓 = {⟨1, 𝑃⟩} → Σ𝑘 ∈ {1} (𝑓𝑘) = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))
2726eqeq2d 2745 . . . . 5 (𝑓 = {⟨1, 𝑃⟩} → (𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1)))
2827anbi2d 632 . . . 4 (𝑓 = {⟨1, 𝑃⟩} → ((1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))))
2928rspcev 3530 . . 3 (({⟨1, 𝑃⟩} ∈ (ℙ ↑m {1}) ∧ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))) → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)))
308, 21, 29syl2anc 587 . 2 (𝑃 ∈ ℙ → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)))
31 oveq2 7210 . . . . . 6 (𝑑 = 1 → (1...𝑑) = (1...1))
32 1z 12190 . . . . . . 7 1 ∈ ℤ
33 fzsn 13137 . . . . . . 7 (1 ∈ ℤ → (1...1) = {1})
3432, 33ax-mp 5 . . . . . 6 (1...1) = {1}
3531, 34eqtrdi 2790 . . . . 5 (𝑑 = 1 → (1...𝑑) = {1})
3635oveq2d 7218 . . . 4 (𝑑 = 1 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m {1}))
37 breq1 5046 . . . . 5 (𝑑 = 1 → (𝑑 ≤ 3 ↔ 1 ≤ 3))
3835sumeq1d 15248 . . . . . 6 (𝑑 = 1 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ {1} (𝑓𝑘))
3938eqeq2d 2745 . . . . 5 (𝑑 = 1 → (𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)))
4037, 39anbi12d 634 . . . 4 (𝑑 = 1 → ((𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘))))
4136, 40rexeqbidv 3307 . . 3 (𝑑 = 1 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘))))
4241rspcev 3530 . 2 ((1 ∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
431, 30, 42sylancr 590 1 (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wrex 3055  {csn 4531  cop 4537   class class class wbr 5043  wf 6365  cfv 6369  (class class class)co 7202  m cmap 8497  cc 10710  cr 10711  1c1 10713  cle 10851  cn 11813  3c3 11869  cz 12159  ...cfz 13078  Σcsu 15232  cprime 16209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079  df-fzo 13222  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-sum 15233  df-prm 16210
This theorem is referenced by:  nnsum4primesprm  44870  nnsum3primesle9  44873
  Copyright terms: Public domain W3C validator