Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesprm Structured version   Visualization version   GIF version

Theorem nnsum3primesprm 43962
Description: Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020.) (Proof shortened by AV, 17-Apr-2021.)
Assertion
Ref Expression
nnsum3primesprm (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑃,𝑑,𝑓,𝑘

Proof of Theorem nnsum3primesprm
StepHypRef Expression
1 1nn 11651 . 2 1 ∈ ℕ
2 1zzd 12016 . . . . 5 (𝑃 ∈ ℙ → 1 ∈ ℤ)
3 id 22 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℙ)
42, 3fsnd 6659 . . . 4 (𝑃 ∈ ℙ → {⟨1, 𝑃⟩}:{1}⟶ℙ)
5 prmex 16023 . . . . 5 ℙ ∈ V
6 snex 5334 . . . . 5 {1} ∈ V
75, 6elmap 8437 . . . 4 ({⟨1, 𝑃⟩} ∈ (ℙ ↑m {1}) ↔ {⟨1, 𝑃⟩}:{1}⟶ℙ)
84, 7sylibr 236 . . 3 (𝑃 ∈ ℙ → {⟨1, 𝑃⟩} ∈ (ℙ ↑m {1}))
9 1re 10643 . . . . . . 7 1 ∈ ℝ
10 simpl 485 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → 𝑃 ∈ ℙ)
11 fvsng 6944 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑃 ∈ ℙ) → ({⟨1, 𝑃⟩}‘1) = 𝑃)
129, 10, 11sylancr 589 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → ({⟨1, 𝑃⟩}‘1) = 𝑃)
1312sumeq2dv 15062 . . . . 5 (𝑃 ∈ ℙ → Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1) = Σ𝑘 ∈ {1}𝑃)
14 prmz 16021 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1514zcnd 12091 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
16 eqidd 2824 . . . . . . 7 (𝑘 = 1 → 𝑃 = 𝑃)
1716sumsn 15103 . . . . . 6 ((1 ∈ ℝ ∧ 𝑃 ∈ ℂ) → Σ𝑘 ∈ {1}𝑃 = 𝑃)
189, 15, 17sylancr 589 . . . . 5 (𝑃 ∈ ℙ → Σ𝑘 ∈ {1}𝑃 = 𝑃)
1913, 18eqtr2d 2859 . . . 4 (𝑃 ∈ ℙ → 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))
20 1le3 11852 . . . 4 1 ≤ 3
2119, 20jctil 522 . . 3 (𝑃 ∈ ℙ → (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1)))
22 simpl 485 . . . . . . . 8 ((𝑓 = {⟨1, 𝑃⟩} ∧ 𝑘 ∈ {1}) → 𝑓 = {⟨1, 𝑃⟩})
23 elsni 4586 . . . . . . . . 9 (𝑘 ∈ {1} → 𝑘 = 1)
2423adantl 484 . . . . . . . 8 ((𝑓 = {⟨1, 𝑃⟩} ∧ 𝑘 ∈ {1}) → 𝑘 = 1)
2522, 24fveq12d 6679 . . . . . . 7 ((𝑓 = {⟨1, 𝑃⟩} ∧ 𝑘 ∈ {1}) → (𝑓𝑘) = ({⟨1, 𝑃⟩}‘1))
2625sumeq2dv 15062 . . . . . 6 (𝑓 = {⟨1, 𝑃⟩} → Σ𝑘 ∈ {1} (𝑓𝑘) = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))
2726eqeq2d 2834 . . . . 5 (𝑓 = {⟨1, 𝑃⟩} → (𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1)))
2827anbi2d 630 . . . 4 (𝑓 = {⟨1, 𝑃⟩} → ((1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))))
2928rspcev 3625 . . 3 (({⟨1, 𝑃⟩} ∈ (ℙ ↑m {1}) ∧ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))) → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)))
308, 21, 29syl2anc 586 . 2 (𝑃 ∈ ℙ → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)))
31 oveq2 7166 . . . . . 6 (𝑑 = 1 → (1...𝑑) = (1...1))
32 1z 12015 . . . . . . 7 1 ∈ ℤ
33 fzsn 12952 . . . . . . 7 (1 ∈ ℤ → (1...1) = {1})
3432, 33ax-mp 5 . . . . . 6 (1...1) = {1}
3531, 34syl6eq 2874 . . . . 5 (𝑑 = 1 → (1...𝑑) = {1})
3635oveq2d 7174 . . . 4 (𝑑 = 1 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m {1}))
37 breq1 5071 . . . . 5 (𝑑 = 1 → (𝑑 ≤ 3 ↔ 1 ≤ 3))
3835sumeq1d 15060 . . . . . 6 (𝑑 = 1 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ {1} (𝑓𝑘))
3938eqeq2d 2834 . . . . 5 (𝑑 = 1 → (𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)))
4037, 39anbi12d 632 . . . 4 (𝑑 = 1 → ((𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘))))
4136, 40rexeqbidv 3404 . . 3 (𝑑 = 1 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘))))
4241rspcev 3625 . 2 ((1 ∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
431, 30, 42sylancr 589 1 (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3141  {csn 4569  cop 4575   class class class wbr 5068  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  cc 10537  cr 10538  1c1 10540  cle 10678  cn 11640  3c3 11696  cz 11984  ...cfz 12895  Σcsu 15044  cprime 16017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-prm 16018
This theorem is referenced by:  nnsum4primesprm  43963  nnsum3primesle9  43966
  Copyright terms: Public domain W3C validator