Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnsum3primesprm | Structured version Visualization version GIF version |
Description: Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020.) (Proof shortened by AV, 17-Apr-2021.) |
Ref | Expression |
---|---|
nnsum3primesprm | ⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 11914 | . 2 ⊢ 1 ∈ ℕ | |
2 | 1zzd 12281 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 ∈ ℤ) | |
3 | id 22 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℙ) | |
4 | 2, 3 | fsnd 6742 | . . . 4 ⊢ (𝑃 ∈ ℙ → {〈1, 𝑃〉}:{1}⟶ℙ) |
5 | prmex 16310 | . . . . 5 ⊢ ℙ ∈ V | |
6 | snex 5349 | . . . . 5 ⊢ {1} ∈ V | |
7 | 5, 6 | elmap 8617 | . . . 4 ⊢ ({〈1, 𝑃〉} ∈ (ℙ ↑m {1}) ↔ {〈1, 𝑃〉}:{1}⟶ℙ) |
8 | 4, 7 | sylibr 233 | . . 3 ⊢ (𝑃 ∈ ℙ → {〈1, 𝑃〉} ∈ (ℙ ↑m {1})) |
9 | 1re 10906 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
10 | simpl 482 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → 𝑃 ∈ ℙ) | |
11 | fvsng 7034 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝑃 ∈ ℙ) → ({〈1, 𝑃〉}‘1) = 𝑃) | |
12 | 9, 10, 11 | sylancr 586 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → ({〈1, 𝑃〉}‘1) = 𝑃) |
13 | 12 | sumeq2dv 15343 | . . . . 5 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1) = Σ𝑘 ∈ {1}𝑃) |
14 | prmz 16308 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
15 | 14 | zcnd 12356 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) |
16 | eqidd 2739 | . . . . . . 7 ⊢ (𝑘 = 1 → 𝑃 = 𝑃) | |
17 | 16 | sumsn 15386 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 𝑃 ∈ ℂ) → Σ𝑘 ∈ {1}𝑃 = 𝑃) |
18 | 9, 15, 17 | sylancr 586 | . . . . 5 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ {1}𝑃 = 𝑃) |
19 | 13, 18 | eqtr2d 2779 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1)) |
20 | 1le3 12115 | . . . 4 ⊢ 1 ≤ 3 | |
21 | 19, 20 | jctil 519 | . . 3 ⊢ (𝑃 ∈ ℙ → (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1))) |
22 | simpl 482 | . . . . . . . 8 ⊢ ((𝑓 = {〈1, 𝑃〉} ∧ 𝑘 ∈ {1}) → 𝑓 = {〈1, 𝑃〉}) | |
23 | elsni 4575 | . . . . . . . . 9 ⊢ (𝑘 ∈ {1} → 𝑘 = 1) | |
24 | 23 | adantl 481 | . . . . . . . 8 ⊢ ((𝑓 = {〈1, 𝑃〉} ∧ 𝑘 ∈ {1}) → 𝑘 = 1) |
25 | 22, 24 | fveq12d 6763 | . . . . . . 7 ⊢ ((𝑓 = {〈1, 𝑃〉} ∧ 𝑘 ∈ {1}) → (𝑓‘𝑘) = ({〈1, 𝑃〉}‘1)) |
26 | 25 | sumeq2dv 15343 | . . . . . 6 ⊢ (𝑓 = {〈1, 𝑃〉} → Σ𝑘 ∈ {1} (𝑓‘𝑘) = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1)) |
27 | 26 | eqeq2d 2749 | . . . . 5 ⊢ (𝑓 = {〈1, 𝑃〉} → (𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1))) |
28 | 27 | anbi2d 628 | . . . 4 ⊢ (𝑓 = {〈1, 𝑃〉} → ((1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1)))) |
29 | 28 | rspcev 3552 | . . 3 ⊢ (({〈1, 𝑃〉} ∈ (ℙ ↑m {1}) ∧ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1))) → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) |
30 | 8, 21, 29 | syl2anc 583 | . 2 ⊢ (𝑃 ∈ ℙ → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) |
31 | oveq2 7263 | . . . . . 6 ⊢ (𝑑 = 1 → (1...𝑑) = (1...1)) | |
32 | 1z 12280 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
33 | fzsn 13227 | . . . . . . 7 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
34 | 32, 33 | ax-mp 5 | . . . . . 6 ⊢ (1...1) = {1} |
35 | 31, 34 | eqtrdi 2795 | . . . . 5 ⊢ (𝑑 = 1 → (1...𝑑) = {1}) |
36 | 35 | oveq2d 7271 | . . . 4 ⊢ (𝑑 = 1 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m {1})) |
37 | breq1 5073 | . . . . 5 ⊢ (𝑑 = 1 → (𝑑 ≤ 3 ↔ 1 ≤ 3)) | |
38 | 35 | sumeq1d 15341 | . . . . . 6 ⊢ (𝑑 = 1 → Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) = Σ𝑘 ∈ {1} (𝑓‘𝑘)) |
39 | 38 | eqeq2d 2749 | . . . . 5 ⊢ (𝑑 = 1 → (𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) |
40 | 37, 39 | anbi12d 630 | . . . 4 ⊢ (𝑑 = 1 → ((𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘)))) |
41 | 36, 40 | rexeqbidv 3328 | . . 3 ⊢ (𝑑 = 1 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘)))) |
42 | 41 | rspcev 3552 | . 2 ⊢ ((1 ∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
43 | 1, 30, 42 | sylancr 586 | 1 ⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {csn 4558 〈cop 4564 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℂcc 10800 ℝcr 10801 1c1 10803 ≤ cle 10941 ℕcn 11903 3c3 11959 ℤcz 12249 ...cfz 13168 Σcsu 15325 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-prm 16305 |
This theorem is referenced by: nnsum4primesprm 45131 nnsum3primesle9 45134 |
Copyright terms: Public domain | W3C validator |