|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnsum3primesprm | Structured version Visualization version GIF version | ||
| Description: Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020.) (Proof shortened by AV, 17-Apr-2021.) | 
| Ref | Expression | 
|---|---|
| nnsum3primesprm | ⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1nn 12277 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | 1zzd 12648 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 ∈ ℤ) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℙ) | |
| 4 | 2, 3 | fsnd 6891 | . . . 4 ⊢ (𝑃 ∈ ℙ → {〈1, 𝑃〉}:{1}⟶ℙ) | 
| 5 | prmex 16714 | . . . . 5 ⊢ ℙ ∈ V | |
| 6 | snex 5436 | . . . . 5 ⊢ {1} ∈ V | |
| 7 | 5, 6 | elmap 8911 | . . . 4 ⊢ ({〈1, 𝑃〉} ∈ (ℙ ↑m {1}) ↔ {〈1, 𝑃〉}:{1}⟶ℙ) | 
| 8 | 4, 7 | sylibr 234 | . . 3 ⊢ (𝑃 ∈ ℙ → {〈1, 𝑃〉} ∈ (ℙ ↑m {1})) | 
| 9 | 1re 11261 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 10 | simpl 482 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → 𝑃 ∈ ℙ) | |
| 11 | fvsng 7200 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝑃 ∈ ℙ) → ({〈1, 𝑃〉}‘1) = 𝑃) | |
| 12 | 9, 10, 11 | sylancr 587 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → ({〈1, 𝑃〉}‘1) = 𝑃) | 
| 13 | 12 | sumeq2dv 15738 | . . . . 5 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1) = Σ𝑘 ∈ {1}𝑃) | 
| 14 | prmz 16712 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 15 | 14 | zcnd 12723 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) | 
| 16 | eqidd 2738 | . . . . . . 7 ⊢ (𝑘 = 1 → 𝑃 = 𝑃) | |
| 17 | 16 | sumsn 15782 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 𝑃 ∈ ℂ) → Σ𝑘 ∈ {1}𝑃 = 𝑃) | 
| 18 | 9, 15, 17 | sylancr 587 | . . . . 5 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ {1}𝑃 = 𝑃) | 
| 19 | 13, 18 | eqtr2d 2778 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1)) | 
| 20 | 1le3 12478 | . . . 4 ⊢ 1 ≤ 3 | |
| 21 | 19, 20 | jctil 519 | . . 3 ⊢ (𝑃 ∈ ℙ → (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1))) | 
| 22 | simpl 482 | . . . . . . . 8 ⊢ ((𝑓 = {〈1, 𝑃〉} ∧ 𝑘 ∈ {1}) → 𝑓 = {〈1, 𝑃〉}) | |
| 23 | elsni 4643 | . . . . . . . . 9 ⊢ (𝑘 ∈ {1} → 𝑘 = 1) | |
| 24 | 23 | adantl 481 | . . . . . . . 8 ⊢ ((𝑓 = {〈1, 𝑃〉} ∧ 𝑘 ∈ {1}) → 𝑘 = 1) | 
| 25 | 22, 24 | fveq12d 6913 | . . . . . . 7 ⊢ ((𝑓 = {〈1, 𝑃〉} ∧ 𝑘 ∈ {1}) → (𝑓‘𝑘) = ({〈1, 𝑃〉}‘1)) | 
| 26 | 25 | sumeq2dv 15738 | . . . . . 6 ⊢ (𝑓 = {〈1, 𝑃〉} → Σ𝑘 ∈ {1} (𝑓‘𝑘) = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1)) | 
| 27 | 26 | eqeq2d 2748 | . . . . 5 ⊢ (𝑓 = {〈1, 𝑃〉} → (𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1))) | 
| 28 | 27 | anbi2d 630 | . . . 4 ⊢ (𝑓 = {〈1, 𝑃〉} → ((1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1)))) | 
| 29 | 28 | rspcev 3622 | . . 3 ⊢ (({〈1, 𝑃〉} ∈ (ℙ ↑m {1}) ∧ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1))) → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) | 
| 30 | 8, 21, 29 | syl2anc 584 | . 2 ⊢ (𝑃 ∈ ℙ → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) | 
| 31 | oveq2 7439 | . . . . . 6 ⊢ (𝑑 = 1 → (1...𝑑) = (1...1)) | |
| 32 | 1z 12647 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
| 33 | fzsn 13606 | . . . . . . 7 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
| 34 | 32, 33 | ax-mp 5 | . . . . . 6 ⊢ (1...1) = {1} | 
| 35 | 31, 34 | eqtrdi 2793 | . . . . 5 ⊢ (𝑑 = 1 → (1...𝑑) = {1}) | 
| 36 | 35 | oveq2d 7447 | . . . 4 ⊢ (𝑑 = 1 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m {1})) | 
| 37 | breq1 5146 | . . . . 5 ⊢ (𝑑 = 1 → (𝑑 ≤ 3 ↔ 1 ≤ 3)) | |
| 38 | 35 | sumeq1d 15736 | . . . . . 6 ⊢ (𝑑 = 1 → Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) = Σ𝑘 ∈ {1} (𝑓‘𝑘)) | 
| 39 | 38 | eqeq2d 2748 | . . . . 5 ⊢ (𝑑 = 1 → (𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) | 
| 40 | 37, 39 | anbi12d 632 | . . . 4 ⊢ (𝑑 = 1 → ((𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘)))) | 
| 41 | 36, 40 | rexeqbidv 3347 | . . 3 ⊢ (𝑑 = 1 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘)))) | 
| 42 | 41 | rspcev 3622 | . 2 ⊢ ((1 ∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | 
| 43 | 1, 30, 42 | sylancr 587 | 1 ⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 {csn 4626 〈cop 4632 class class class wbr 5143 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 ℂcc 11153 ℝcr 11154 1c1 11156 ≤ cle 11296 ℕcn 12266 3c3 12322 ℤcz 12613 ...cfz 13547 Σcsu 15722 ℙcprime 16708 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 df-prm 16709 | 
| This theorem is referenced by: nnsum4primesprm 47778 nnsum3primesle9 47781 | 
| Copyright terms: Public domain | W3C validator |