| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnsum3primesprm | Structured version Visualization version GIF version | ||
| Description: Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020.) (Proof shortened by AV, 17-Apr-2021.) |
| Ref | Expression |
|---|---|
| nnsum3primesprm | ⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12143 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | 1zzd 12509 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 ∈ ℤ) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℙ) | |
| 4 | 2, 3 | fsnd 6812 | . . . 4 ⊢ (𝑃 ∈ ℙ → {〈1, 𝑃〉}:{1}⟶ℙ) |
| 5 | prmex 16590 | . . . . 5 ⊢ ℙ ∈ V | |
| 6 | snex 5376 | . . . . 5 ⊢ {1} ∈ V | |
| 7 | 5, 6 | elmap 8801 | . . . 4 ⊢ ({〈1, 𝑃〉} ∈ (ℙ ↑m {1}) ↔ {〈1, 𝑃〉}:{1}⟶ℙ) |
| 8 | 4, 7 | sylibr 234 | . . 3 ⊢ (𝑃 ∈ ℙ → {〈1, 𝑃〉} ∈ (ℙ ↑m {1})) |
| 9 | 1re 11119 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 10 | simpl 482 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → 𝑃 ∈ ℙ) | |
| 11 | fvsng 7120 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝑃 ∈ ℙ) → ({〈1, 𝑃〉}‘1) = 𝑃) | |
| 12 | 9, 10, 11 | sylancr 587 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → ({〈1, 𝑃〉}‘1) = 𝑃) |
| 13 | 12 | sumeq2dv 15611 | . . . . 5 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1) = Σ𝑘 ∈ {1}𝑃) |
| 14 | prmz 16588 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 15 | 14 | zcnd 12584 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) |
| 16 | eqidd 2734 | . . . . . . 7 ⊢ (𝑘 = 1 → 𝑃 = 𝑃) | |
| 17 | 16 | sumsn 15655 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 𝑃 ∈ ℂ) → Σ𝑘 ∈ {1}𝑃 = 𝑃) |
| 18 | 9, 15, 17 | sylancr 587 | . . . . 5 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ {1}𝑃 = 𝑃) |
| 19 | 13, 18 | eqtr2d 2769 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1)) |
| 20 | 1le3 12339 | . . . 4 ⊢ 1 ≤ 3 | |
| 21 | 19, 20 | jctil 519 | . . 3 ⊢ (𝑃 ∈ ℙ → (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1))) |
| 22 | simpl 482 | . . . . . . . 8 ⊢ ((𝑓 = {〈1, 𝑃〉} ∧ 𝑘 ∈ {1}) → 𝑓 = {〈1, 𝑃〉}) | |
| 23 | elsni 4592 | . . . . . . . . 9 ⊢ (𝑘 ∈ {1} → 𝑘 = 1) | |
| 24 | 23 | adantl 481 | . . . . . . . 8 ⊢ ((𝑓 = {〈1, 𝑃〉} ∧ 𝑘 ∈ {1}) → 𝑘 = 1) |
| 25 | 22, 24 | fveq12d 6835 | . . . . . . 7 ⊢ ((𝑓 = {〈1, 𝑃〉} ∧ 𝑘 ∈ {1}) → (𝑓‘𝑘) = ({〈1, 𝑃〉}‘1)) |
| 26 | 25 | sumeq2dv 15611 | . . . . . 6 ⊢ (𝑓 = {〈1, 𝑃〉} → Σ𝑘 ∈ {1} (𝑓‘𝑘) = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1)) |
| 27 | 26 | eqeq2d 2744 | . . . . 5 ⊢ (𝑓 = {〈1, 𝑃〉} → (𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1))) |
| 28 | 27 | anbi2d 630 | . . . 4 ⊢ (𝑓 = {〈1, 𝑃〉} → ((1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1)))) |
| 29 | 28 | rspcev 3573 | . . 3 ⊢ (({〈1, 𝑃〉} ∈ (ℙ ↑m {1}) ∧ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1))) → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) |
| 30 | 8, 21, 29 | syl2anc 584 | . 2 ⊢ (𝑃 ∈ ℙ → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) |
| 31 | oveq2 7360 | . . . . . 6 ⊢ (𝑑 = 1 → (1...𝑑) = (1...1)) | |
| 32 | 1z 12508 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
| 33 | fzsn 13468 | . . . . . . 7 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
| 34 | 32, 33 | ax-mp 5 | . . . . . 6 ⊢ (1...1) = {1} |
| 35 | 31, 34 | eqtrdi 2784 | . . . . 5 ⊢ (𝑑 = 1 → (1...𝑑) = {1}) |
| 36 | 35 | oveq2d 7368 | . . . 4 ⊢ (𝑑 = 1 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m {1})) |
| 37 | breq1 5096 | . . . . 5 ⊢ (𝑑 = 1 → (𝑑 ≤ 3 ↔ 1 ≤ 3)) | |
| 38 | 35 | sumeq1d 15609 | . . . . . 6 ⊢ (𝑑 = 1 → Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) = Σ𝑘 ∈ {1} (𝑓‘𝑘)) |
| 39 | 38 | eqeq2d 2744 | . . . . 5 ⊢ (𝑑 = 1 → (𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) |
| 40 | 37, 39 | anbi12d 632 | . . . 4 ⊢ (𝑑 = 1 → ((𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘)))) |
| 41 | 36, 40 | rexeqbidv 3314 | . . 3 ⊢ (𝑑 = 1 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘)))) |
| 42 | 41 | rspcev 3573 | . 2 ⊢ ((1 ∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
| 43 | 1, 30, 42 | sylancr 587 | 1 ⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {csn 4575 〈cop 4581 class class class wbr 5093 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 ℂcc 11011 ℝcr 11012 1c1 11014 ≤ cle 11154 ℕcn 12132 3c3 12188 ℤcz 12475 ...cfz 13409 Σcsu 15595 ℙcprime 16584 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-sum 15596 df-prm 16585 |
| This theorem is referenced by: nnsum4primesprm 47915 nnsum3primesle9 47918 |
| Copyright terms: Public domain | W3C validator |