Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primesprm Structured version   Visualization version   GIF version

Theorem nnsum3primesprm 47771
Description: Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020.) (Proof shortened by AV, 17-Apr-2021.)
Assertion
Ref Expression
nnsum3primesprm (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑃,𝑑,𝑓,𝑘

Proof of Theorem nnsum3primesprm
StepHypRef Expression
1 1nn 12256 . 2 1 ∈ ℕ
2 1zzd 12628 . . . . 5 (𝑃 ∈ ℙ → 1 ∈ ℤ)
3 id 22 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℙ)
42, 3fsnd 6866 . . . 4 (𝑃 ∈ ℙ → {⟨1, 𝑃⟩}:{1}⟶ℙ)
5 prmex 16701 . . . . 5 ℙ ∈ V
6 snex 5411 . . . . 5 {1} ∈ V
75, 6elmap 8890 . . . 4 ({⟨1, 𝑃⟩} ∈ (ℙ ↑m {1}) ↔ {⟨1, 𝑃⟩}:{1}⟶ℙ)
84, 7sylibr 234 . . 3 (𝑃 ∈ ℙ → {⟨1, 𝑃⟩} ∈ (ℙ ↑m {1}))
9 1re 11240 . . . . . . 7 1 ∈ ℝ
10 simpl 482 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → 𝑃 ∈ ℙ)
11 fvsng 7177 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑃 ∈ ℙ) → ({⟨1, 𝑃⟩}‘1) = 𝑃)
129, 10, 11sylancr 587 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → ({⟨1, 𝑃⟩}‘1) = 𝑃)
1312sumeq2dv 15723 . . . . 5 (𝑃 ∈ ℙ → Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1) = Σ𝑘 ∈ {1}𝑃)
14 prmz 16699 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1514zcnd 12703 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
16 eqidd 2737 . . . . . . 7 (𝑘 = 1 → 𝑃 = 𝑃)
1716sumsn 15767 . . . . . 6 ((1 ∈ ℝ ∧ 𝑃 ∈ ℂ) → Σ𝑘 ∈ {1}𝑃 = 𝑃)
189, 15, 17sylancr 587 . . . . 5 (𝑃 ∈ ℙ → Σ𝑘 ∈ {1}𝑃 = 𝑃)
1913, 18eqtr2d 2772 . . . 4 (𝑃 ∈ ℙ → 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))
20 1le3 12457 . . . 4 1 ≤ 3
2119, 20jctil 519 . . 3 (𝑃 ∈ ℙ → (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1)))
22 simpl 482 . . . . . . . 8 ((𝑓 = {⟨1, 𝑃⟩} ∧ 𝑘 ∈ {1}) → 𝑓 = {⟨1, 𝑃⟩})
23 elsni 4623 . . . . . . . . 9 (𝑘 ∈ {1} → 𝑘 = 1)
2423adantl 481 . . . . . . . 8 ((𝑓 = {⟨1, 𝑃⟩} ∧ 𝑘 ∈ {1}) → 𝑘 = 1)
2522, 24fveq12d 6888 . . . . . . 7 ((𝑓 = {⟨1, 𝑃⟩} ∧ 𝑘 ∈ {1}) → (𝑓𝑘) = ({⟨1, 𝑃⟩}‘1))
2625sumeq2dv 15723 . . . . . 6 (𝑓 = {⟨1, 𝑃⟩} → Σ𝑘 ∈ {1} (𝑓𝑘) = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))
2726eqeq2d 2747 . . . . 5 (𝑓 = {⟨1, 𝑃⟩} → (𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1)))
2827anbi2d 630 . . . 4 (𝑓 = {⟨1, 𝑃⟩} → ((1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))))
2928rspcev 3606 . . 3 (({⟨1, 𝑃⟩} ∈ (ℙ ↑m {1}) ∧ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({⟨1, 𝑃⟩}‘1))) → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)))
308, 21, 29syl2anc 584 . 2 (𝑃 ∈ ℙ → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)))
31 oveq2 7418 . . . . . 6 (𝑑 = 1 → (1...𝑑) = (1...1))
32 1z 12627 . . . . . . 7 1 ∈ ℤ
33 fzsn 13588 . . . . . . 7 (1 ∈ ℤ → (1...1) = {1})
3432, 33ax-mp 5 . . . . . 6 (1...1) = {1}
3531, 34eqtrdi 2787 . . . . 5 (𝑑 = 1 → (1...𝑑) = {1})
3635oveq2d 7426 . . . 4 (𝑑 = 1 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m {1}))
37 breq1 5127 . . . . 5 (𝑑 = 1 → (𝑑 ≤ 3 ↔ 1 ≤ 3))
3835sumeq1d 15721 . . . . . 6 (𝑑 = 1 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ {1} (𝑓𝑘))
3938eqeq2d 2747 . . . . 5 (𝑑 = 1 → (𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘)))
4037, 39anbi12d 632 . . . 4 (𝑑 = 1 → ((𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘))))
4136, 40rexeqbidv 3330 . . 3 (𝑑 = 1 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘))))
4241rspcev 3606 . 2 ((1 ∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
431, 30, 42sylancr 587 1 (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061  {csn 4606  cop 4612   class class class wbr 5124  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  cc 11132  cr 11133  1c1 11135  cle 11275  cn 12245  3c3 12301  cz 12593  ...cfz 13529  Σcsu 15707  cprime 16695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-prm 16696
This theorem is referenced by:  nnsum4primesprm  47772  nnsum3primesle9  47775
  Copyright terms: Public domain W3C validator