| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnsum3primesprm | Structured version Visualization version GIF version | ||
| Description: Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020.) (Proof shortened by AV, 17-Apr-2021.) |
| Ref | Expression |
|---|---|
| nnsum3primesprm | ⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12133 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | 1zzd 12500 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 ∈ ℤ) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℙ) | |
| 4 | 2, 3 | fsnd 6806 | . . . 4 ⊢ (𝑃 ∈ ℙ → {〈1, 𝑃〉}:{1}⟶ℙ) |
| 5 | prmex 16585 | . . . . 5 ⊢ ℙ ∈ V | |
| 6 | snex 5374 | . . . . 5 ⊢ {1} ∈ V | |
| 7 | 5, 6 | elmap 8795 | . . . 4 ⊢ ({〈1, 𝑃〉} ∈ (ℙ ↑m {1}) ↔ {〈1, 𝑃〉}:{1}⟶ℙ) |
| 8 | 4, 7 | sylibr 234 | . . 3 ⊢ (𝑃 ∈ ℙ → {〈1, 𝑃〉} ∈ (ℙ ↑m {1})) |
| 9 | 1re 11109 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 10 | simpl 482 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → 𝑃 ∈ ℙ) | |
| 11 | fvsng 7114 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝑃 ∈ ℙ) → ({〈1, 𝑃〉}‘1) = 𝑃) | |
| 12 | 9, 10, 11 | sylancr 587 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → ({〈1, 𝑃〉}‘1) = 𝑃) |
| 13 | 12 | sumeq2dv 15606 | . . . . 5 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1) = Σ𝑘 ∈ {1}𝑃) |
| 14 | prmz 16583 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 15 | 14 | zcnd 12575 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) |
| 16 | eqidd 2732 | . . . . . . 7 ⊢ (𝑘 = 1 → 𝑃 = 𝑃) | |
| 17 | 16 | sumsn 15650 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 𝑃 ∈ ℂ) → Σ𝑘 ∈ {1}𝑃 = 𝑃) |
| 18 | 9, 15, 17 | sylancr 587 | . . . . 5 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ {1}𝑃 = 𝑃) |
| 19 | 13, 18 | eqtr2d 2767 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1)) |
| 20 | 1le3 12329 | . . . 4 ⊢ 1 ≤ 3 | |
| 21 | 19, 20 | jctil 519 | . . 3 ⊢ (𝑃 ∈ ℙ → (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1))) |
| 22 | simpl 482 | . . . . . . . 8 ⊢ ((𝑓 = {〈1, 𝑃〉} ∧ 𝑘 ∈ {1}) → 𝑓 = {〈1, 𝑃〉}) | |
| 23 | elsni 4593 | . . . . . . . . 9 ⊢ (𝑘 ∈ {1} → 𝑘 = 1) | |
| 24 | 23 | adantl 481 | . . . . . . . 8 ⊢ ((𝑓 = {〈1, 𝑃〉} ∧ 𝑘 ∈ {1}) → 𝑘 = 1) |
| 25 | 22, 24 | fveq12d 6829 | . . . . . . 7 ⊢ ((𝑓 = {〈1, 𝑃〉} ∧ 𝑘 ∈ {1}) → (𝑓‘𝑘) = ({〈1, 𝑃〉}‘1)) |
| 26 | 25 | sumeq2dv 15606 | . . . . . 6 ⊢ (𝑓 = {〈1, 𝑃〉} → Σ𝑘 ∈ {1} (𝑓‘𝑘) = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1)) |
| 27 | 26 | eqeq2d 2742 | . . . . 5 ⊢ (𝑓 = {〈1, 𝑃〉} → (𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1))) |
| 28 | 27 | anbi2d 630 | . . . 4 ⊢ (𝑓 = {〈1, 𝑃〉} → ((1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1)))) |
| 29 | 28 | rspcev 3577 | . . 3 ⊢ (({〈1, 𝑃〉} ∈ (ℙ ↑m {1}) ∧ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1))) → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) |
| 30 | 8, 21, 29 | syl2anc 584 | . 2 ⊢ (𝑃 ∈ ℙ → ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) |
| 31 | oveq2 7354 | . . . . . 6 ⊢ (𝑑 = 1 → (1...𝑑) = (1...1)) | |
| 32 | 1z 12499 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
| 33 | fzsn 13463 | . . . . . . 7 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
| 34 | 32, 33 | ax-mp 5 | . . . . . 6 ⊢ (1...1) = {1} |
| 35 | 31, 34 | eqtrdi 2782 | . . . . 5 ⊢ (𝑑 = 1 → (1...𝑑) = {1}) |
| 36 | 35 | oveq2d 7362 | . . . 4 ⊢ (𝑑 = 1 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m {1})) |
| 37 | breq1 5094 | . . . . 5 ⊢ (𝑑 = 1 → (𝑑 ≤ 3 ↔ 1 ≤ 3)) | |
| 38 | 35 | sumeq1d 15604 | . . . . . 6 ⊢ (𝑑 = 1 → Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) = Σ𝑘 ∈ {1} (𝑓‘𝑘)) |
| 39 | 38 | eqeq2d 2742 | . . . . 5 ⊢ (𝑑 = 1 → (𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) |
| 40 | 37, 39 | anbi12d 632 | . . . 4 ⊢ (𝑑 = 1 → ((𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘)))) |
| 41 | 36, 40 | rexeqbidv 3313 | . . 3 ⊢ (𝑑 = 1 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘)))) |
| 42 | 41 | rspcev 3577 | . 2 ⊢ ((1 ∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑m {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
| 43 | 1, 30, 42 | sylancr 587 | 1 ⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {csn 4576 〈cop 4582 class class class wbr 5091 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℂcc 11001 ℝcr 11002 1c1 11004 ≤ cle 11144 ℕcn 12122 3c3 12178 ℤcz 12465 ...cfz 13404 Σcsu 15590 ℙcprime 16579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-fz 13405 df-fzo 13552 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-sum 15591 df-prm 16580 |
| This theorem is referenced by: nnsum4primesprm 47821 nnsum3primesle9 47824 |
| Copyright terms: Public domain | W3C validator |