![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnsum3primesprm | Structured version Visualization version GIF version |
Description: Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020.) (Proof shortened by AV, 17-Apr-2021.) |
Ref | Expression |
---|---|
nnsum3primesprm | ⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 11497 | . 2 ⊢ 1 ∈ ℕ | |
2 | 1zzd 11862 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 ∈ ℤ) | |
3 | id 22 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℙ) | |
4 | 2, 3 | fsnd 6525 | . . . 4 ⊢ (𝑃 ∈ ℙ → {〈1, 𝑃〉}:{1}⟶ℙ) |
5 | prmex 15850 | . . . . 5 ⊢ ℙ ∈ V | |
6 | snex 5223 | . . . . 5 ⊢ {1} ∈ V | |
7 | 5, 6 | elmap 8285 | . . . 4 ⊢ ({〈1, 𝑃〉} ∈ (ℙ ↑𝑚 {1}) ↔ {〈1, 𝑃〉}:{1}⟶ℙ) |
8 | 4, 7 | sylibr 235 | . . 3 ⊢ (𝑃 ∈ ℙ → {〈1, 𝑃〉} ∈ (ℙ ↑𝑚 {1})) |
9 | 1re 10487 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
10 | simpl 483 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → 𝑃 ∈ ℙ) | |
11 | fvsng 6805 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝑃 ∈ ℙ) → ({〈1, 𝑃〉}‘1) = 𝑃) | |
12 | 9, 10, 11 | sylancr 587 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ {1}) → ({〈1, 𝑃〉}‘1) = 𝑃) |
13 | 12 | sumeq2dv 14893 | . . . . 5 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1) = Σ𝑘 ∈ {1}𝑃) |
14 | prmz 15848 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
15 | 14 | zcnd 11937 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) |
16 | eqidd 2796 | . . . . . . 7 ⊢ (𝑘 = 1 → 𝑃 = 𝑃) | |
17 | 16 | sumsn 14934 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 𝑃 ∈ ℂ) → Σ𝑘 ∈ {1}𝑃 = 𝑃) |
18 | 9, 15, 17 | sylancr 587 | . . . . 5 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ {1}𝑃 = 𝑃) |
19 | 13, 18 | eqtr2d 2832 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1)) |
20 | 1le3 11697 | . . . 4 ⊢ 1 ≤ 3 | |
21 | 19, 20 | jctil 520 | . . 3 ⊢ (𝑃 ∈ ℙ → (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1))) |
22 | simpl 483 | . . . . . . . 8 ⊢ ((𝑓 = {〈1, 𝑃〉} ∧ 𝑘 ∈ {1}) → 𝑓 = {〈1, 𝑃〉}) | |
23 | elsni 4489 | . . . . . . . . 9 ⊢ (𝑘 ∈ {1} → 𝑘 = 1) | |
24 | 23 | adantl 482 | . . . . . . . 8 ⊢ ((𝑓 = {〈1, 𝑃〉} ∧ 𝑘 ∈ {1}) → 𝑘 = 1) |
25 | 22, 24 | fveq12d 6545 | . . . . . . 7 ⊢ ((𝑓 = {〈1, 𝑃〉} ∧ 𝑘 ∈ {1}) → (𝑓‘𝑘) = ({〈1, 𝑃〉}‘1)) |
26 | 25 | sumeq2dv 14893 | . . . . . 6 ⊢ (𝑓 = {〈1, 𝑃〉} → Σ𝑘 ∈ {1} (𝑓‘𝑘) = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1)) |
27 | 26 | eqeq2d 2805 | . . . . 5 ⊢ (𝑓 = {〈1, 𝑃〉} → (𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1))) |
28 | 27 | anbi2d 628 | . . . 4 ⊢ (𝑓 = {〈1, 𝑃〉} → ((1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1)))) |
29 | 28 | rspcev 3559 | . . 3 ⊢ (({〈1, 𝑃〉} ∈ (ℙ ↑𝑚 {1}) ∧ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} ({〈1, 𝑃〉}‘1))) → ∃𝑓 ∈ (ℙ ↑𝑚 {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) |
30 | 8, 21, 29 | syl2anc 584 | . 2 ⊢ (𝑃 ∈ ℙ → ∃𝑓 ∈ (ℙ ↑𝑚 {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) |
31 | oveq2 7024 | . . . . . 6 ⊢ (𝑑 = 1 → (1...𝑑) = (1...1)) | |
32 | 1z 11861 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
33 | fzsn 12799 | . . . . . . 7 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
34 | 32, 33 | ax-mp 5 | . . . . . 6 ⊢ (1...1) = {1} |
35 | 31, 34 | syl6eq 2847 | . . . . 5 ⊢ (𝑑 = 1 → (1...𝑑) = {1}) |
36 | 35 | oveq2d 7032 | . . . 4 ⊢ (𝑑 = 1 → (ℙ ↑𝑚 (1...𝑑)) = (ℙ ↑𝑚 {1})) |
37 | breq1 4965 | . . . . 5 ⊢ (𝑑 = 1 → (𝑑 ≤ 3 ↔ 1 ≤ 3)) | |
38 | 35 | sumeq1d 14891 | . . . . . 6 ⊢ (𝑑 = 1 → Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) = Σ𝑘 ∈ {1} (𝑓‘𝑘)) |
39 | 38 | eqeq2d 2805 | . . . . 5 ⊢ (𝑑 = 1 → (𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) ↔ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) |
40 | 37, 39 | anbi12d 630 | . . . 4 ⊢ (𝑑 = 1 → ((𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ (1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘)))) |
41 | 36, 40 | rexeqbidv 3362 | . . 3 ⊢ (𝑑 = 1 → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘)))) |
42 | 41 | rspcev 3559 | . 2 ⊢ ((1 ∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑𝑚 {1})(1 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ {1} (𝑓‘𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
43 | 1, 30, 42 | sylancr 587 | 1 ⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∃wrex 3106 {csn 4472 〈cop 4478 class class class wbr 4962 ⟶wf 6221 ‘cfv 6225 (class class class)co 7016 ↑𝑚 cmap 8256 ℂcc 10381 ℝcr 10382 1c1 10384 ≤ cle 10522 ℕcn 11486 3c3 11541 ℤcz 11829 ...cfz 12742 Σcsu 14876 ℙcprime 15844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-inf2 8950 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-sup 8752 df-oi 8820 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-n0 11746 df-z 11830 df-uz 12094 df-rp 12240 df-fz 12743 df-fzo 12884 df-seq 13220 df-exp 13280 df-hash 13541 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-clim 14679 df-sum 14877 df-prm 15845 |
This theorem is referenced by: nnsum4primesprm 43438 nnsum3primesle9 43441 |
Copyright terms: Public domain | W3C validator |