![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arympt1fv | Structured version Visualization version GIF version |
Description: The value of a unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.) |
Ref | Expression |
---|---|
1arympt1.f | ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) |
Ref | Expression |
---|---|
1arympt1fv | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{⟨0, 𝐵⟩}) = (𝐴‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1arympt1.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0)))) |
3 | fveq1 6884 | . . . . 5 ⊢ (𝑥 = {⟨0, 𝐵⟩} → (𝑥‘0) = ({⟨0, 𝐵⟩}‘0)) | |
4 | 3 | adantl 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {⟨0, 𝐵⟩}) → (𝑥‘0) = ({⟨0, 𝐵⟩}‘0)) |
5 | c0ex 11212 | . . . . . . . 8 ⊢ 0 ∈ V | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 0 ∈ V) |
7 | 6 | anim1i 614 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (0 ∈ V ∧ 𝐵 ∈ 𝑋)) |
8 | 7 | adantr 480 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {⟨0, 𝐵⟩}) → (0 ∈ V ∧ 𝐵 ∈ 𝑋)) |
9 | fvsng 7174 | . . . . 5 ⊢ ((0 ∈ V ∧ 𝐵 ∈ 𝑋) → ({⟨0, 𝐵⟩}‘0) = 𝐵) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {⟨0, 𝐵⟩}) → ({⟨0, 𝐵⟩}‘0) = 𝐵) |
11 | 4, 10 | eqtrd 2766 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {⟨0, 𝐵⟩}) → (𝑥‘0) = 𝐵) |
12 | 11 | fveq2d 6889 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {⟨0, 𝐵⟩}) → (𝐴‘(𝑥‘0)) = (𝐴‘𝐵)) |
13 | 5 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 0 ∈ V) |
14 | simpr 484 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
15 | 13, 14 | fsnd 6870 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {⟨0, 𝐵⟩}:{0}⟶𝑋) |
16 | snex 5424 | . . . . 5 ⊢ {0} ∈ V | |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝐵 ∈ 𝑋 → {0} ∈ V) |
18 | elmapg 8835 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ {0} ∈ V) → ({⟨0, 𝐵⟩} ∈ (𝑋 ↑m {0}) ↔ {⟨0, 𝐵⟩}:{0}⟶𝑋)) | |
19 | 17, 18 | sylan2 592 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → ({⟨0, 𝐵⟩} ∈ (𝑋 ↑m {0}) ↔ {⟨0, 𝐵⟩}:{0}⟶𝑋)) |
20 | 15, 19 | mpbird 257 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {⟨0, 𝐵⟩} ∈ (𝑋 ↑m {0})) |
21 | fvexd 6900 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐴‘𝐵) ∈ V) | |
22 | 2, 12, 20, 21 | fvmptd 6999 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{⟨0, 𝐵⟩}) = (𝐴‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 {csn 4623 ⟨cop 4629 ↦ cmpt 5224 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 ↑m cmap 8822 0cc0 11112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-mulcl 11174 ax-i2m1 11180 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8824 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |