![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arympt1fv | Structured version Visualization version GIF version |
Description: The value of a unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.) |
Ref | Expression |
---|---|
1arympt1.f | ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) |
Ref | Expression |
---|---|
1arympt1fv | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐵〉}) = (𝐴‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1arympt1.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0)))) |
3 | fveq1 6841 | . . . . 5 ⊢ (𝑥 = {〈0, 𝐵〉} → (𝑥‘0) = ({〈0, 𝐵〉}‘0)) | |
4 | 3 | adantl 482 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (𝑥‘0) = ({〈0, 𝐵〉}‘0)) |
5 | c0ex 11149 | . . . . . . . 8 ⊢ 0 ∈ V | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 0 ∈ V) |
7 | 6 | anim1i 615 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (0 ∈ V ∧ 𝐵 ∈ 𝑋)) |
8 | 7 | adantr 481 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (0 ∈ V ∧ 𝐵 ∈ 𝑋)) |
9 | fvsng 7126 | . . . . 5 ⊢ ((0 ∈ V ∧ 𝐵 ∈ 𝑋) → ({〈0, 𝐵〉}‘0) = 𝐵) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → ({〈0, 𝐵〉}‘0) = 𝐵) |
11 | 4, 10 | eqtrd 2776 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (𝑥‘0) = 𝐵) |
12 | 11 | fveq2d 6846 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (𝐴‘(𝑥‘0)) = (𝐴‘𝐵)) |
13 | 5 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 0 ∈ V) |
14 | simpr 485 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
15 | 13, 14 | fsnd 6827 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {〈0, 𝐵〉}:{0}⟶𝑋) |
16 | snex 5388 | . . . . 5 ⊢ {0} ∈ V | |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝐵 ∈ 𝑋 → {0} ∈ V) |
18 | elmapg 8778 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ {0} ∈ V) → ({〈0, 𝐵〉} ∈ (𝑋 ↑m {0}) ↔ {〈0, 𝐵〉}:{0}⟶𝑋)) | |
19 | 17, 18 | sylan2 593 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → ({〈0, 𝐵〉} ∈ (𝑋 ↑m {0}) ↔ {〈0, 𝐵〉}:{0}⟶𝑋)) |
20 | 15, 19 | mpbird 256 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {〈0, 𝐵〉} ∈ (𝑋 ↑m {0})) |
21 | fvexd 6857 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐴‘𝐵) ∈ V) | |
22 | 2, 12, 20, 21 | fvmptd 6955 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐵〉}) = (𝐴‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3445 {csn 4586 〈cop 4592 ↦ cmpt 5188 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ↑m cmap 8765 0cc0 11051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-mulcl 11113 ax-i2m1 11119 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-map 8767 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |