![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arympt1fv | Structured version Visualization version GIF version |
Description: The value of a unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.) |
Ref | Expression |
---|---|
1arympt1.f | ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) |
Ref | Expression |
---|---|
1arympt1fv | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐵〉}) = (𝐴‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1arympt1.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0)))) |
3 | fveq1 6919 | . . . . 5 ⊢ (𝑥 = {〈0, 𝐵〉} → (𝑥‘0) = ({〈0, 𝐵〉}‘0)) | |
4 | 3 | adantl 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (𝑥‘0) = ({〈0, 𝐵〉}‘0)) |
5 | c0ex 11284 | . . . . . . . 8 ⊢ 0 ∈ V | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 0 ∈ V) |
7 | 6 | anim1i 614 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (0 ∈ V ∧ 𝐵 ∈ 𝑋)) |
8 | 7 | adantr 480 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (0 ∈ V ∧ 𝐵 ∈ 𝑋)) |
9 | fvsng 7214 | . . . . 5 ⊢ ((0 ∈ V ∧ 𝐵 ∈ 𝑋) → ({〈0, 𝐵〉}‘0) = 𝐵) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → ({〈0, 𝐵〉}‘0) = 𝐵) |
11 | 4, 10 | eqtrd 2780 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (𝑥‘0) = 𝐵) |
12 | 11 | fveq2d 6924 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (𝐴‘(𝑥‘0)) = (𝐴‘𝐵)) |
13 | 5 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 0 ∈ V) |
14 | simpr 484 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
15 | 13, 14 | fsnd 6905 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {〈0, 𝐵〉}:{0}⟶𝑋) |
16 | snex 5451 | . . . . 5 ⊢ {0} ∈ V | |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝐵 ∈ 𝑋 → {0} ∈ V) |
18 | elmapg 8897 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ {0} ∈ V) → ({〈0, 𝐵〉} ∈ (𝑋 ↑m {0}) ↔ {〈0, 𝐵〉}:{0}⟶𝑋)) | |
19 | 17, 18 | sylan2 592 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → ({〈0, 𝐵〉} ∈ (𝑋 ↑m {0}) ↔ {〈0, 𝐵〉}:{0}⟶𝑋)) |
20 | 15, 19 | mpbird 257 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {〈0, 𝐵〉} ∈ (𝑋 ↑m {0})) |
21 | fvexd 6935 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐴‘𝐵) ∈ V) | |
22 | 2, 12, 20, 21 | fvmptd 7036 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐵〉}) = (𝐴‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 〈cop 4654 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 0cc0 11184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |