Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arympt1fv | Structured version Visualization version GIF version |
Description: The value of a unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.) |
Ref | Expression |
---|---|
1arympt1.f | ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) |
Ref | Expression |
---|---|
1arympt1fv | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐵〉}) = (𝐴‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1arympt1.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0)))) |
3 | fveq1 6755 | . . . . 5 ⊢ (𝑥 = {〈0, 𝐵〉} → (𝑥‘0) = ({〈0, 𝐵〉}‘0)) | |
4 | 3 | adantl 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (𝑥‘0) = ({〈0, 𝐵〉}‘0)) |
5 | c0ex 10900 | . . . . . . . 8 ⊢ 0 ∈ V | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 0 ∈ V) |
7 | 6 | anim1i 614 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (0 ∈ V ∧ 𝐵 ∈ 𝑋)) |
8 | 7 | adantr 480 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (0 ∈ V ∧ 𝐵 ∈ 𝑋)) |
9 | fvsng 7034 | . . . . 5 ⊢ ((0 ∈ V ∧ 𝐵 ∈ 𝑋) → ({〈0, 𝐵〉}‘0) = 𝐵) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → ({〈0, 𝐵〉}‘0) = 𝐵) |
11 | 4, 10 | eqtrd 2778 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (𝑥‘0) = 𝐵) |
12 | 11 | fveq2d 6760 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (𝐴‘(𝑥‘0)) = (𝐴‘𝐵)) |
13 | 5 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 0 ∈ V) |
14 | simpr 484 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
15 | 13, 14 | fsnd 6742 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {〈0, 𝐵〉}:{0}⟶𝑋) |
16 | snex 5349 | . . . . 5 ⊢ {0} ∈ V | |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝐵 ∈ 𝑋 → {0} ∈ V) |
18 | elmapg 8586 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ {0} ∈ V) → ({〈0, 𝐵〉} ∈ (𝑋 ↑m {0}) ↔ {〈0, 𝐵〉}:{0}⟶𝑋)) | |
19 | 17, 18 | sylan2 592 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → ({〈0, 𝐵〉} ∈ (𝑋 ↑m {0}) ↔ {〈0, 𝐵〉}:{0}⟶𝑋)) |
20 | 15, 19 | mpbird 256 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {〈0, 𝐵〉} ∈ (𝑋 ↑m {0})) |
21 | fvexd 6771 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐴‘𝐵) ∈ V) | |
22 | 2, 12, 20, 21 | fvmptd 6864 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐵〉}) = (𝐴‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 〈cop 4564 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 0cc0 10802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |