Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arympt1fv Structured version   Visualization version   GIF version

Theorem 1arympt1fv 47278
Description: The value of a unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.)
Hypothesis
Ref Expression
1arympt1.f 𝐹 = (𝑥 ∈ (𝑋m {0}) ↦ (𝐴‘(𝑥‘0)))
Assertion
Ref Expression
1arympt1fv ((𝑋𝑉𝐵𝑋) → (𝐹‘{⟨0, 𝐵⟩}) = (𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝑋   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem 1arympt1fv
StepHypRef Expression
1 1arympt1.f . . 3 𝐹 = (𝑥 ∈ (𝑋m {0}) ↦ (𝐴‘(𝑥‘0)))
21a1i 11 . 2 ((𝑋𝑉𝐵𝑋) → 𝐹 = (𝑥 ∈ (𝑋m {0}) ↦ (𝐴‘(𝑥‘0))))
3 fveq1 6887 . . . . 5 (𝑥 = {⟨0, 𝐵⟩} → (𝑥‘0) = ({⟨0, 𝐵⟩}‘0))
43adantl 482 . . . 4 (((𝑋𝑉𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐵⟩}) → (𝑥‘0) = ({⟨0, 𝐵⟩}‘0))
5 c0ex 11204 . . . . . . . 8 0 ∈ V
65a1i 11 . . . . . . 7 (𝑋𝑉 → 0 ∈ V)
76anim1i 615 . . . . . 6 ((𝑋𝑉𝐵𝑋) → (0 ∈ V ∧ 𝐵𝑋))
87adantr 481 . . . . 5 (((𝑋𝑉𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐵⟩}) → (0 ∈ V ∧ 𝐵𝑋))
9 fvsng 7174 . . . . 5 ((0 ∈ V ∧ 𝐵𝑋) → ({⟨0, 𝐵⟩}‘0) = 𝐵)
108, 9syl 17 . . . 4 (((𝑋𝑉𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐵⟩}) → ({⟨0, 𝐵⟩}‘0) = 𝐵)
114, 10eqtrd 2772 . . 3 (((𝑋𝑉𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐵⟩}) → (𝑥‘0) = 𝐵)
1211fveq2d 6892 . 2 (((𝑋𝑉𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐵⟩}) → (𝐴‘(𝑥‘0)) = (𝐴𝐵))
135a1i 11 . . . 4 ((𝑋𝑉𝐵𝑋) → 0 ∈ V)
14 simpr 485 . . . 4 ((𝑋𝑉𝐵𝑋) → 𝐵𝑋)
1513, 14fsnd 6873 . . 3 ((𝑋𝑉𝐵𝑋) → {⟨0, 𝐵⟩}:{0}⟶𝑋)
16 snex 5430 . . . . 5 {0} ∈ V
1716a1i 11 . . . 4 (𝐵𝑋 → {0} ∈ V)
18 elmapg 8829 . . . 4 ((𝑋𝑉 ∧ {0} ∈ V) → ({⟨0, 𝐵⟩} ∈ (𝑋m {0}) ↔ {⟨0, 𝐵⟩}:{0}⟶𝑋))
1917, 18sylan2 593 . . 3 ((𝑋𝑉𝐵𝑋) → ({⟨0, 𝐵⟩} ∈ (𝑋m {0}) ↔ {⟨0, 𝐵⟩}:{0}⟶𝑋))
2015, 19mpbird 256 . 2 ((𝑋𝑉𝐵𝑋) → {⟨0, 𝐵⟩} ∈ (𝑋m {0}))
21 fvexd 6903 . 2 ((𝑋𝑉𝐵𝑋) → (𝐴𝐵) ∈ V)
222, 12, 20, 21fvmptd 7002 1 ((𝑋𝑉𝐵𝑋) → (𝐹‘{⟨0, 𝐵⟩}) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  {csn 4627  cop 4633  cmpt 5230  wf 6536  cfv 6540  (class class class)co 7405  m cmap 8816  0cc0 11106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-mulcl 11168  ax-i2m1 11174
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator