| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arympt1fv | Structured version Visualization version GIF version | ||
| Description: The value of a unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.) |
| Ref | Expression |
|---|---|
| 1arympt1.f | ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) |
| Ref | Expression |
|---|---|
| 1arympt1fv | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐵〉}) = (𝐴‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1arympt1.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0)))) |
| 3 | fveq1 6839 | . . . . 5 ⊢ (𝑥 = {〈0, 𝐵〉} → (𝑥‘0) = ({〈0, 𝐵〉}‘0)) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (𝑥‘0) = ({〈0, 𝐵〉}‘0)) |
| 5 | c0ex 11144 | . . . . . . . 8 ⊢ 0 ∈ V | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 0 ∈ V) |
| 7 | 6 | anim1i 615 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (0 ∈ V ∧ 𝐵 ∈ 𝑋)) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (0 ∈ V ∧ 𝐵 ∈ 𝑋)) |
| 9 | fvsng 7136 | . . . . 5 ⊢ ((0 ∈ V ∧ 𝐵 ∈ 𝑋) → ({〈0, 𝐵〉}‘0) = 𝐵) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → ({〈0, 𝐵〉}‘0) = 𝐵) |
| 11 | 4, 10 | eqtrd 2764 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (𝑥‘0) = 𝐵) |
| 12 | 11 | fveq2d 6844 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (𝐴‘(𝑥‘0)) = (𝐴‘𝐵)) |
| 13 | 5 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 0 ∈ V) |
| 14 | simpr 484 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
| 15 | 13, 14 | fsnd 6825 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {〈0, 𝐵〉}:{0}⟶𝑋) |
| 16 | snex 5386 | . . . . 5 ⊢ {0} ∈ V | |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝐵 ∈ 𝑋 → {0} ∈ V) |
| 18 | elmapg 8789 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ {0} ∈ V) → ({〈0, 𝐵〉} ∈ (𝑋 ↑m {0}) ↔ {〈0, 𝐵〉}:{0}⟶𝑋)) | |
| 19 | 17, 18 | sylan2 593 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → ({〈0, 𝐵〉} ∈ (𝑋 ↑m {0}) ↔ {〈0, 𝐵〉}:{0}⟶𝑋)) |
| 20 | 15, 19 | mpbird 257 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {〈0, 𝐵〉} ∈ (𝑋 ↑m {0})) |
| 21 | fvexd 6855 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐴‘𝐵) ∈ V) | |
| 22 | 2, 12, 20, 21 | fvmptd 6957 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐵〉}) = (𝐴‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 〈cop 4591 ↦ cmpt 5183 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 0cc0 11044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-i2m1 11112 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |