| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1arympt1fv | Structured version Visualization version GIF version | ||
| Description: The value of a unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.) |
| Ref | Expression |
|---|---|
| 1arympt1.f | ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) |
| Ref | Expression |
|---|---|
| 1arympt1fv | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐵〉}) = (𝐴‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1arympt1.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0)))) |
| 3 | fveq1 6904 | . . . . 5 ⊢ (𝑥 = {〈0, 𝐵〉} → (𝑥‘0) = ({〈0, 𝐵〉}‘0)) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (𝑥‘0) = ({〈0, 𝐵〉}‘0)) |
| 5 | c0ex 11256 | . . . . . . . 8 ⊢ 0 ∈ V | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 0 ∈ V) |
| 7 | 6 | anim1i 615 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (0 ∈ V ∧ 𝐵 ∈ 𝑋)) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (0 ∈ V ∧ 𝐵 ∈ 𝑋)) |
| 9 | fvsng 7201 | . . . . 5 ⊢ ((0 ∈ V ∧ 𝐵 ∈ 𝑋) → ({〈0, 𝐵〉}‘0) = 𝐵) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → ({〈0, 𝐵〉}‘0) = 𝐵) |
| 11 | 4, 10 | eqtrd 2776 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (𝑥‘0) = 𝐵) |
| 12 | 11 | fveq2d 6909 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) ∧ 𝑥 = {〈0, 𝐵〉}) → (𝐴‘(𝑥‘0)) = (𝐴‘𝐵)) |
| 13 | 5 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 0 ∈ V) |
| 14 | simpr 484 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
| 15 | 13, 14 | fsnd 6890 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {〈0, 𝐵〉}:{0}⟶𝑋) |
| 16 | snex 5435 | . . . . 5 ⊢ {0} ∈ V | |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝐵 ∈ 𝑋 → {0} ∈ V) |
| 18 | elmapg 8880 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ {0} ∈ V) → ({〈0, 𝐵〉} ∈ (𝑋 ↑m {0}) ↔ {〈0, 𝐵〉}:{0}⟶𝑋)) | |
| 19 | 17, 18 | sylan2 593 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → ({〈0, 𝐵〉} ∈ (𝑋 ↑m {0}) ↔ {〈0, 𝐵〉}:{0}⟶𝑋)) |
| 20 | 15, 19 | mpbird 257 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → {〈0, 𝐵〉} ∈ (𝑋 ↑m {0})) |
| 21 | fvexd 6920 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐴‘𝐵) ∈ V) | |
| 22 | 2, 12, 20, 21 | fvmptd 7022 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐵〉}) = (𝐴‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 {csn 4625 〈cop 4631 ↦ cmpt 5224 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ↑m cmap 8867 0cc0 11156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-mulcl 11218 ax-i2m1 11224 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |