Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1arympt1fv Structured version   Visualization version   GIF version

Theorem 1arympt1fv 48628
Description: The value of a unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.)
Hypothesis
Ref Expression
1arympt1.f 𝐹 = (𝑥 ∈ (𝑋m {0}) ↦ (𝐴‘(𝑥‘0)))
Assertion
Ref Expression
1arympt1fv ((𝑋𝑉𝐵𝑋) → (𝐹‘{⟨0, 𝐵⟩}) = (𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝑋   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem 1arympt1fv
StepHypRef Expression
1 1arympt1.f . . 3 𝐹 = (𝑥 ∈ (𝑋m {0}) ↦ (𝐴‘(𝑥‘0)))
21a1i 11 . 2 ((𝑋𝑉𝐵𝑋) → 𝐹 = (𝑥 ∈ (𝑋m {0}) ↦ (𝐴‘(𝑥‘0))))
3 fveq1 6857 . . . . 5 (𝑥 = {⟨0, 𝐵⟩} → (𝑥‘0) = ({⟨0, 𝐵⟩}‘0))
43adantl 481 . . . 4 (((𝑋𝑉𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐵⟩}) → (𝑥‘0) = ({⟨0, 𝐵⟩}‘0))
5 c0ex 11168 . . . . . . . 8 0 ∈ V
65a1i 11 . . . . . . 7 (𝑋𝑉 → 0 ∈ V)
76anim1i 615 . . . . . 6 ((𝑋𝑉𝐵𝑋) → (0 ∈ V ∧ 𝐵𝑋))
87adantr 480 . . . . 5 (((𝑋𝑉𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐵⟩}) → (0 ∈ V ∧ 𝐵𝑋))
9 fvsng 7154 . . . . 5 ((0 ∈ V ∧ 𝐵𝑋) → ({⟨0, 𝐵⟩}‘0) = 𝐵)
108, 9syl 17 . . . 4 (((𝑋𝑉𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐵⟩}) → ({⟨0, 𝐵⟩}‘0) = 𝐵)
114, 10eqtrd 2764 . . 3 (((𝑋𝑉𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐵⟩}) → (𝑥‘0) = 𝐵)
1211fveq2d 6862 . 2 (((𝑋𝑉𝐵𝑋) ∧ 𝑥 = {⟨0, 𝐵⟩}) → (𝐴‘(𝑥‘0)) = (𝐴𝐵))
135a1i 11 . . . 4 ((𝑋𝑉𝐵𝑋) → 0 ∈ V)
14 simpr 484 . . . 4 ((𝑋𝑉𝐵𝑋) → 𝐵𝑋)
1513, 14fsnd 6843 . . 3 ((𝑋𝑉𝐵𝑋) → {⟨0, 𝐵⟩}:{0}⟶𝑋)
16 snex 5391 . . . . 5 {0} ∈ V
1716a1i 11 . . . 4 (𝐵𝑋 → {0} ∈ V)
18 elmapg 8812 . . . 4 ((𝑋𝑉 ∧ {0} ∈ V) → ({⟨0, 𝐵⟩} ∈ (𝑋m {0}) ↔ {⟨0, 𝐵⟩}:{0}⟶𝑋))
1917, 18sylan2 593 . . 3 ((𝑋𝑉𝐵𝑋) → ({⟨0, 𝐵⟩} ∈ (𝑋m {0}) ↔ {⟨0, 𝐵⟩}:{0}⟶𝑋))
2015, 19mpbird 257 . 2 ((𝑋𝑉𝐵𝑋) → {⟨0, 𝐵⟩} ∈ (𝑋m {0}))
21 fvexd 6873 . 2 ((𝑋𝑉𝐵𝑋) → (𝐴𝐵) ∈ V)
222, 12, 20, 21fvmptd 6975 1 ((𝑋𝑉𝐵𝑋) → (𝐹‘{⟨0, 𝐵⟩}) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cop 4595  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  0cc0 11068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-mulcl 11130  ax-i2m1 11136
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator