| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1fv | Structured version Visualization version GIF version | ||
| Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by AV, 18-Apr-2021.) |
| Ref | Expression |
|---|---|
| 1fv | ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12490 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 0 ∈ ℤ) |
| 3 | id 22 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ 𝑉) | |
| 4 | 2, 3 | fsnd 6815 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {〈0, 𝑁〉}:{0}⟶𝑉) |
| 5 | fvsng 7123 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ 𝑉) → ({〈0, 𝑁〉}‘0) = 𝑁) | |
| 6 | 1, 5 | mpan 690 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ({〈0, 𝑁〉}‘0) = 𝑁) |
| 7 | 4, 6 | jca 511 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁)) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁)) |
| 9 | id 22 | . . . . 5 ⊢ (𝑃 = {〈0, 𝑁〉} → 𝑃 = {〈0, 𝑁〉}) | |
| 10 | fz0sn 13534 | . . . . . 6 ⊢ (0...0) = {0} | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑃 = {〈0, 𝑁〉} → (0...0) = {0}) |
| 12 | 9, 11 | feq12d 6647 | . . . 4 ⊢ (𝑃 = {〈0, 𝑁〉} → (𝑃:(0...0)⟶𝑉 ↔ {〈0, 𝑁〉}:{0}⟶𝑉)) |
| 13 | fveq1 6830 | . . . . 5 ⊢ (𝑃 = {〈0, 𝑁〉} → (𝑃‘0) = ({〈0, 𝑁〉}‘0)) | |
| 14 | 13 | eqeq1d 2735 | . . . 4 ⊢ (𝑃 = {〈0, 𝑁〉} → ((𝑃‘0) = 𝑁 ↔ ({〈0, 𝑁〉}‘0) = 𝑁)) |
| 15 | 12, 14 | anbi12d 632 | . . 3 ⊢ (𝑃 = {〈0, 𝑁〉} → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁))) |
| 16 | 15 | adantl 481 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁))) |
| 17 | 8, 16 | mpbird 257 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {csn 4577 〈cop 4583 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 0cc0 11017 ℤcz 12479 ...cfz 13414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-addrcl 11078 ax-rnegex 11088 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-neg 11358 df-z 12480 df-uz 12743 df-fz 13415 |
| This theorem is referenced by: is0wlk 30118 is0trl 30124 0pthon1 30129 |
| Copyright terms: Public domain | W3C validator |