MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1fv Structured version   Visualization version   GIF version

Theorem 1fv 13608
Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by AV, 18-Apr-2021.)
Assertion
Ref Expression
1fv ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁))

Proof of Theorem 1fv
StepHypRef Expression
1 0z 12540 . . . . . 6 0 ∈ ℤ
21a1i 11 . . . . 5 (𝑁𝑉 → 0 ∈ ℤ)
3 id 22 . . . . 5 (𝑁𝑉𝑁𝑉)
42, 3fsnd 6843 . . . 4 (𝑁𝑉 → {⟨0, 𝑁⟩}:{0}⟶𝑉)
5 fvsng 7154 . . . . 5 ((0 ∈ ℤ ∧ 𝑁𝑉) → ({⟨0, 𝑁⟩}‘0) = 𝑁)
61, 5mpan 690 . . . 4 (𝑁𝑉 → ({⟨0, 𝑁⟩}‘0) = 𝑁)
74, 6jca 511 . . 3 (𝑁𝑉 → ({⟨0, 𝑁⟩}:{0}⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))
87adantr 480 . 2 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → ({⟨0, 𝑁⟩}:{0}⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))
9 id 22 . . . . 5 (𝑃 = {⟨0, 𝑁⟩} → 𝑃 = {⟨0, 𝑁⟩})
10 fz0sn 13588 . . . . . 6 (0...0) = {0}
1110a1i 11 . . . . 5 (𝑃 = {⟨0, 𝑁⟩} → (0...0) = {0})
129, 11feq12d 6676 . . . 4 (𝑃 = {⟨0, 𝑁⟩} → (𝑃:(0...0)⟶𝑉 ↔ {⟨0, 𝑁⟩}:{0}⟶𝑉))
13 fveq1 6857 . . . . 5 (𝑃 = {⟨0, 𝑁⟩} → (𝑃‘0) = ({⟨0, 𝑁⟩}‘0))
1413eqeq1d 2731 . . . 4 (𝑃 = {⟨0, 𝑁⟩} → ((𝑃‘0) = 𝑁 ↔ ({⟨0, 𝑁⟩}‘0) = 𝑁))
1512, 14anbi12d 632 . . 3 (𝑃 = {⟨0, 𝑁⟩} → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:{0}⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)))
1615adantl 481 . 2 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:{0}⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)))
178, 16mpbird 257 1 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4589  cop 4595  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068  cz 12529  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-addrcl 11129  ax-rnegex 11139  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-neg 11408  df-z 12530  df-uz 12794  df-fz 13469
This theorem is referenced by:  is0wlk  30046  is0trl  30052  0pthon1  30057
  Copyright terms: Public domain W3C validator