![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1fv | Structured version Visualization version GIF version |
Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by AV, 18-Apr-2021.) |
Ref | Expression |
---|---|
1fv | ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12566 | . . . . . 6 ⊢ 0 ∈ ℤ | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 0 ∈ ℤ) |
3 | id 22 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ 𝑉) | |
4 | 2, 3 | fsnd 6866 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {⟨0, 𝑁⟩}:{0}⟶𝑉) |
5 | fvsng 7170 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ 𝑉) → ({⟨0, 𝑁⟩}‘0) = 𝑁) | |
6 | 1, 5 | mpan 687 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ({⟨0, 𝑁⟩}‘0) = 𝑁) |
7 | 4, 6 | jca 511 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ({⟨0, 𝑁⟩}:{0}⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)) |
8 | 7 | adantr 480 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {⟨0, 𝑁⟩}) → ({⟨0, 𝑁⟩}:{0}⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)) |
9 | id 22 | . . . . 5 ⊢ (𝑃 = {⟨0, 𝑁⟩} → 𝑃 = {⟨0, 𝑁⟩}) | |
10 | fz0sn 13598 | . . . . . 6 ⊢ (0...0) = {0} | |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑃 = {⟨0, 𝑁⟩} → (0...0) = {0}) |
12 | 9, 11 | feq12d 6695 | . . . 4 ⊢ (𝑃 = {⟨0, 𝑁⟩} → (𝑃:(0...0)⟶𝑉 ↔ {⟨0, 𝑁⟩}:{0}⟶𝑉)) |
13 | fveq1 6880 | . . . . 5 ⊢ (𝑃 = {⟨0, 𝑁⟩} → (𝑃‘0) = ({⟨0, 𝑁⟩}‘0)) | |
14 | 13 | eqeq1d 2726 | . . . 4 ⊢ (𝑃 = {⟨0, 𝑁⟩} → ((𝑃‘0) = 𝑁 ↔ ({⟨0, 𝑁⟩}‘0) = 𝑁)) |
15 | 12, 14 | anbi12d 630 | . . 3 ⊢ (𝑃 = {⟨0, 𝑁⟩} → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:{0}⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))) |
16 | 15 | adantl 481 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {⟨0, 𝑁⟩}) → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:{0}⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))) |
17 | 8, 16 | mpbird 257 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {csn 4620 ⟨cop 4626 ⟶wf 6529 ‘cfv 6533 (class class class)co 7401 0cc0 11106 ℤcz 12555 ...cfz 13481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-addrcl 11167 ax-rnegex 11177 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-neg 11444 df-z 12556 df-uz 12820 df-fz 13482 |
This theorem is referenced by: is0wlk 29839 is0trl 29845 0pthon1 29850 |
Copyright terms: Public domain | W3C validator |