| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1fv | Structured version Visualization version GIF version | ||
| Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by AV, 18-Apr-2021.) |
| Ref | Expression |
|---|---|
| 1fv | ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12599 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 0 ∈ ℤ) |
| 3 | id 22 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ 𝑉) | |
| 4 | 2, 3 | fsnd 6861 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {〈0, 𝑁〉}:{0}⟶𝑉) |
| 5 | fvsng 7172 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ 𝑉) → ({〈0, 𝑁〉}‘0) = 𝑁) | |
| 6 | 1, 5 | mpan 690 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ({〈0, 𝑁〉}‘0) = 𝑁) |
| 7 | 4, 6 | jca 511 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁)) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁)) |
| 9 | id 22 | . . . . 5 ⊢ (𝑃 = {〈0, 𝑁〉} → 𝑃 = {〈0, 𝑁〉}) | |
| 10 | fz0sn 13644 | . . . . . 6 ⊢ (0...0) = {0} | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑃 = {〈0, 𝑁〉} → (0...0) = {0}) |
| 12 | 9, 11 | feq12d 6694 | . . . 4 ⊢ (𝑃 = {〈0, 𝑁〉} → (𝑃:(0...0)⟶𝑉 ↔ {〈0, 𝑁〉}:{0}⟶𝑉)) |
| 13 | fveq1 6875 | . . . . 5 ⊢ (𝑃 = {〈0, 𝑁〉} → (𝑃‘0) = ({〈0, 𝑁〉}‘0)) | |
| 14 | 13 | eqeq1d 2737 | . . . 4 ⊢ (𝑃 = {〈0, 𝑁〉} → ((𝑃‘0) = 𝑁 ↔ ({〈0, 𝑁〉}‘0) = 𝑁)) |
| 15 | 12, 14 | anbi12d 632 | . . 3 ⊢ (𝑃 = {〈0, 𝑁〉} → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁))) |
| 16 | 15 | adantl 481 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁))) |
| 17 | 8, 16 | mpbird 257 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4601 〈cop 4607 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 0cc0 11129 ℤcz 12588 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-addrcl 11190 ax-rnegex 11200 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-neg 11469 df-z 12589 df-uz 12853 df-fz 13525 |
| This theorem is referenced by: is0wlk 30098 is0trl 30104 0pthon1 30109 |
| Copyright terms: Public domain | W3C validator |