| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1fv | Structured version Visualization version GIF version | ||
| Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by AV, 18-Apr-2021.) |
| Ref | Expression |
|---|---|
| 1fv | ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12500 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 0 ∈ ℤ) |
| 3 | id 22 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ 𝑉) | |
| 4 | 2, 3 | fsnd 6811 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {〈0, 𝑁〉}:{0}⟶𝑉) |
| 5 | fvsng 7120 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ 𝑉) → ({〈0, 𝑁〉}‘0) = 𝑁) | |
| 6 | 1, 5 | mpan 690 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ({〈0, 𝑁〉}‘0) = 𝑁) |
| 7 | 4, 6 | jca 511 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁)) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁)) |
| 9 | id 22 | . . . . 5 ⊢ (𝑃 = {〈0, 𝑁〉} → 𝑃 = {〈0, 𝑁〉}) | |
| 10 | fz0sn 13548 | . . . . . 6 ⊢ (0...0) = {0} | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑃 = {〈0, 𝑁〉} → (0...0) = {0}) |
| 12 | 9, 11 | feq12d 6644 | . . . 4 ⊢ (𝑃 = {〈0, 𝑁〉} → (𝑃:(0...0)⟶𝑉 ↔ {〈0, 𝑁〉}:{0}⟶𝑉)) |
| 13 | fveq1 6825 | . . . . 5 ⊢ (𝑃 = {〈0, 𝑁〉} → (𝑃‘0) = ({〈0, 𝑁〉}‘0)) | |
| 14 | 13 | eqeq1d 2731 | . . . 4 ⊢ (𝑃 = {〈0, 𝑁〉} → ((𝑃‘0) = 𝑁 ↔ ({〈0, 𝑁〉}‘0) = 𝑁)) |
| 15 | 12, 14 | anbi12d 632 | . . 3 ⊢ (𝑃 = {〈0, 𝑁〉} → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁))) |
| 16 | 15 | adantl 481 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁))) |
| 17 | 8, 16 | mpbird 257 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4579 〈cop 4585 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 0cc0 11028 ℤcz 12489 ...cfz 13428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-addrcl 11089 ax-rnegex 11099 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-neg 11368 df-z 12490 df-uz 12754 df-fz 13429 |
| This theorem is referenced by: is0wlk 30079 is0trl 30085 0pthon1 30090 |
| Copyright terms: Public domain | W3C validator |