| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1fv | Structured version Visualization version GIF version | ||
| Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by AV, 18-Apr-2021.) |
| Ref | Expression |
|---|---|
| 1fv | ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12479 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 0 ∈ ℤ) |
| 3 | id 22 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ 𝑉) | |
| 4 | 2, 3 | fsnd 6806 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {〈0, 𝑁〉}:{0}⟶𝑉) |
| 5 | fvsng 7114 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ 𝑉) → ({〈0, 𝑁〉}‘0) = 𝑁) | |
| 6 | 1, 5 | mpan 690 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ({〈0, 𝑁〉}‘0) = 𝑁) |
| 7 | 4, 6 | jca 511 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁)) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁)) |
| 9 | id 22 | . . . . 5 ⊢ (𝑃 = {〈0, 𝑁〉} → 𝑃 = {〈0, 𝑁〉}) | |
| 10 | fz0sn 13527 | . . . . . 6 ⊢ (0...0) = {0} | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑃 = {〈0, 𝑁〉} → (0...0) = {0}) |
| 12 | 9, 11 | feq12d 6639 | . . . 4 ⊢ (𝑃 = {〈0, 𝑁〉} → (𝑃:(0...0)⟶𝑉 ↔ {〈0, 𝑁〉}:{0}⟶𝑉)) |
| 13 | fveq1 6821 | . . . . 5 ⊢ (𝑃 = {〈0, 𝑁〉} → (𝑃‘0) = ({〈0, 𝑁〉}‘0)) | |
| 14 | 13 | eqeq1d 2733 | . . . 4 ⊢ (𝑃 = {〈0, 𝑁〉} → ((𝑃‘0) = 𝑁 ↔ ({〈0, 𝑁〉}‘0) = 𝑁)) |
| 15 | 12, 14 | anbi12d 632 | . . 3 ⊢ (𝑃 = {〈0, 𝑁〉} → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁))) |
| 16 | 15 | adantl 481 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({〈0, 𝑁〉}:{0}⟶𝑉 ∧ ({〈0, 𝑁〉}‘0) = 𝑁))) |
| 17 | 8, 16 | mpbird 257 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4576 〈cop 4582 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ℤcz 12468 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-neg 11347 df-z 12469 df-uz 12733 df-fz 13408 |
| This theorem is referenced by: is0wlk 30095 is0trl 30101 0pthon1 30106 |
| Copyright terms: Public domain | W3C validator |