![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1fv | Structured version Visualization version GIF version |
Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by AV, 18-Apr-2021.) |
Ref | Expression |
---|---|
1fv | ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12565 | . . . . . 6 ⊢ 0 ∈ ℤ | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 0 ∈ ℤ) |
3 | id 22 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ 𝑉) | |
4 | 2, 3 | fsnd 6873 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {⟨0, 𝑁⟩}:{0}⟶𝑉) |
5 | fvsng 7174 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ 𝑉) → ({⟨0, 𝑁⟩}‘0) = 𝑁) | |
6 | 1, 5 | mpan 688 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ({⟨0, 𝑁⟩}‘0) = 𝑁) |
7 | 4, 6 | jca 512 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ({⟨0, 𝑁⟩}:{0}⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)) |
8 | 7 | adantr 481 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {⟨0, 𝑁⟩}) → ({⟨0, 𝑁⟩}:{0}⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)) |
9 | id 22 | . . . . 5 ⊢ (𝑃 = {⟨0, 𝑁⟩} → 𝑃 = {⟨0, 𝑁⟩}) | |
10 | fz0sn 13597 | . . . . . 6 ⊢ (0...0) = {0} | |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑃 = {⟨0, 𝑁⟩} → (0...0) = {0}) |
12 | 9, 11 | feq12d 6702 | . . . 4 ⊢ (𝑃 = {⟨0, 𝑁⟩} → (𝑃:(0...0)⟶𝑉 ↔ {⟨0, 𝑁⟩}:{0}⟶𝑉)) |
13 | fveq1 6887 | . . . . 5 ⊢ (𝑃 = {⟨0, 𝑁⟩} → (𝑃‘0) = ({⟨0, 𝑁⟩}‘0)) | |
14 | 13 | eqeq1d 2734 | . . . 4 ⊢ (𝑃 = {⟨0, 𝑁⟩} → ((𝑃‘0) = 𝑁 ↔ ({⟨0, 𝑁⟩}‘0) = 𝑁)) |
15 | 12, 14 | anbi12d 631 | . . 3 ⊢ (𝑃 = {⟨0, 𝑁⟩} → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:{0}⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))) |
16 | 15 | adantl 482 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {⟨0, 𝑁⟩}) → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:{0}⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))) |
17 | 8, 16 | mpbird 256 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {csn 4627 ⟨cop 4633 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 0cc0 11106 ℤcz 12554 ...cfz 13480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-addrcl 11167 ax-rnegex 11177 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-neg 11443 df-z 12555 df-uz 12819 df-fz 13481 |
This theorem is referenced by: is0wlk 29359 is0trl 29365 0pthon1 29370 |
Copyright terms: Public domain | W3C validator |