![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcestrcsetclem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for funcestrcsetc 18101. (Contributed by AV, 22-Mar-2020.) |
Ref | Expression |
---|---|
funcestrcsetc.e | β’ πΈ = (ExtStrCatβπ) |
funcestrcsetc.s | β’ π = (SetCatβπ) |
funcestrcsetc.b | β’ π΅ = (BaseβπΈ) |
funcestrcsetc.c | β’ πΆ = (Baseβπ) |
funcestrcsetc.u | β’ (π β π β WUni) |
funcestrcsetc.f | β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) |
funcestrcsetc.g | β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ ((Baseβπ¦) βm (Baseβπ₯))))) |
Ref | Expression |
---|---|
funcestrcsetclem4 | β’ (π β πΊ Fn (π΅ Γ π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 β’ (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ ((Baseβπ¦) βm (Baseβπ₯)))) = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ ((Baseβπ¦) βm (Baseβπ₯)))) | |
2 | ovex 7442 | . . . 4 β’ ((Baseβπ¦) βm (Baseβπ₯)) β V | |
3 | resiexg 7905 | . . . 4 β’ (((Baseβπ¦) βm (Baseβπ₯)) β V β ( I βΎ ((Baseβπ¦) βm (Baseβπ₯))) β V) | |
4 | 2, 3 | ax-mp 5 | . . 3 β’ ( I βΎ ((Baseβπ¦) βm (Baseβπ₯))) β V |
5 | 1, 4 | fnmpoi 8056 | . 2 β’ (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ ((Baseβπ¦) βm (Baseβπ₯)))) Fn (π΅ Γ π΅) |
6 | funcestrcsetc.g | . . 3 β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ ((Baseβπ¦) βm (Baseβπ₯))))) | |
7 | 6 | fneq1d 6643 | . 2 β’ (π β (πΊ Fn (π΅ Γ π΅) β (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ ((Baseβπ¦) βm (Baseβπ₯)))) Fn (π΅ Γ π΅))) |
8 | 5, 7 | mpbiri 258 | 1 β’ (π β πΊ Fn (π΅ Γ π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 Vcvv 3475 β¦ cmpt 5232 I cid 5574 Γ cxp 5675 βΎ cres 5679 Fn wfn 6539 βcfv 6544 (class class class)co 7409 β cmpo 7411 βm cmap 8820 WUnicwun 10695 Basecbs 17144 SetCatcsetc 18025 ExtStrCatcestrc 18073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 |
This theorem is referenced by: funcestrcsetc 18101 |
Copyright terms: Public domain | W3C validator |