![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcestrcsetclem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for funcestrcsetc 18205. (Contributed by AV, 22-Mar-2020.) |
Ref | Expression |
---|---|
funcestrcsetc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
funcestrcsetc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcestrcsetc.b | ⊢ 𝐵 = (Base‘𝐸) |
funcestrcsetc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcestrcsetc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcestrcsetc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcestrcsetc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) |
Ref | Expression |
---|---|
funcestrcsetclem4 | ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) | |
2 | ovex 7464 | . . . 4 ⊢ ((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V | |
3 | resiexg 7935 | . . . 4 ⊢ (((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V |
5 | 1, 4 | fnmpoi 8094 | . 2 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) Fn (𝐵 × 𝐵) |
6 | funcestrcsetc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) | |
7 | 6 | fneq1d 6662 | . 2 ⊢ (𝜑 → (𝐺 Fn (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) Fn (𝐵 × 𝐵))) |
8 | 5, 7 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ↦ cmpt 5231 I cid 5582 × cxp 5687 ↾ cres 5691 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 ↑m cmap 8865 WUnicwun 10738 Basecbs 17245 SetCatcsetc 18129 ExtStrCatcestrc 18177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 |
This theorem is referenced by: funcestrcsetc 18205 |
Copyright terms: Public domain | W3C validator |