Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem4 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem4 17452
 Description: Lemma 4 for funcestrcsetc 17458. (Contributed by AV, 22-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
funcestrcsetclem4 (𝜑𝐺 Fn (𝐵 × 𝐵))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcestrcsetclem4
StepHypRef Expression
1 eqid 2759 . . 3 (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))
2 ovex 7184 . . . 4 ((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V
3 resiexg 7625 . . . 4 (((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V)
42, 3ax-mp 5 . . 3 ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) ∈ V
51, 4fnmpoi 7773 . 2 (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) Fn (𝐵 × 𝐵)
6 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
76fneq1d 6428 . 2 (𝜑 → (𝐺 Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))) Fn (𝐵 × 𝐵)))
85, 7mpbiri 261 1 (𝜑𝐺 Fn (𝐵 × 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1539   ∈ wcel 2112  Vcvv 3410   ↦ cmpt 5113   I cid 5430   × cxp 5523   ↾ cres 5527   Fn wfn 6331  ‘cfv 6336  (class class class)co 7151   ∈ cmpo 7153   ↑m cmap 8417  WUnicwun 10153  Basecbs 16534  SetCatcsetc 17394  ExtStrCatcestrc 17431 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-fv 6344  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7694  df-2nd 7695 This theorem is referenced by:  funcestrcsetc  17458
 Copyright terms: Public domain W3C validator