| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcestrcsetclem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for funcestrcsetc 18055. (Contributed by AV, 23-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcestrcsetc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
| funcestrcsetc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcestrcsetc.b | ⊢ 𝐵 = (Base‘𝐸) |
| funcestrcsetc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcestrcsetc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcestrcsetc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| funcestrcsetc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) |
| funcestrcsetc.m | ⊢ 𝑀 = (Base‘𝑋) |
| funcestrcsetc.n | ⊢ 𝑁 = (Base‘𝑌) |
| Ref | Expression |
|---|---|
| funcestrcsetclem5 | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁 ↑m 𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) |
| 3 | fveq2 6822 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (Base‘𝑦) = (Base‘𝑌)) | |
| 4 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋)) | |
| 5 | 3, 4 | oveqan12rd 7366 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑌) ↑m (Base‘𝑋))) |
| 6 | funcestrcsetc.n | . . . . . 6 ⊢ 𝑁 = (Base‘𝑌) | |
| 7 | funcestrcsetc.m | . . . . . 6 ⊢ 𝑀 = (Base‘𝑋) | |
| 8 | 6, 7 | oveq12i 7358 | . . . . 5 ⊢ (𝑁 ↑m 𝑀) = ((Base‘𝑌) ↑m (Base‘𝑋)) |
| 9 | 5, 8 | eqtr4di 2784 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((Base‘𝑦) ↑m (Base‘𝑥)) = (𝑁 ↑m 𝑀)) |
| 10 | 9 | reseq2d 5928 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ (𝑁 ↑m 𝑀))) |
| 11 | 10 | adantl 481 | . 2 ⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ (𝑁 ↑m 𝑀))) |
| 12 | simprl 770 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 13 | simprr 772 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 14 | ovexd 7381 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁 ↑m 𝑀) ∈ V) | |
| 15 | 14 | resiexd 7150 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ( I ↾ (𝑁 ↑m 𝑀)) ∈ V) |
| 16 | 2, 11, 12, 13, 15 | ovmpod 7498 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁 ↑m 𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5172 I cid 5510 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ↑m cmap 8750 WUnicwun 10591 Basecbs 17120 SetCatcsetc 17982 ExtStrCatcestrc 18028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: funcestrcsetclem6 18051 funcestrcsetclem7 18052 funcestrcsetclem8 18053 funcestrcsetclem9 18054 |
| Copyright terms: Public domain | W3C validator |