| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcestrcsetclem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for funcestrcsetc 18166. (Contributed by AV, 23-Mar-2020.) |
| Ref | Expression |
|---|---|
| funcestrcsetc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
| funcestrcsetc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcestrcsetc.b | ⊢ 𝐵 = (Base‘𝐸) |
| funcestrcsetc.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcestrcsetc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcestrcsetc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| funcestrcsetc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) |
| funcestrcsetc.m | ⊢ 𝑀 = (Base‘𝑋) |
| funcestrcsetc.n | ⊢ 𝑁 = (Base‘𝑌) |
| Ref | Expression |
|---|---|
| funcestrcsetclem5 | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁 ↑m 𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) |
| 3 | fveq2 6881 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (Base‘𝑦) = (Base‘𝑌)) | |
| 4 | fveq2 6881 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋)) | |
| 5 | 3, 4 | oveqan12rd 7430 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑌) ↑m (Base‘𝑋))) |
| 6 | funcestrcsetc.n | . . . . . 6 ⊢ 𝑁 = (Base‘𝑌) | |
| 7 | funcestrcsetc.m | . . . . . 6 ⊢ 𝑀 = (Base‘𝑋) | |
| 8 | 6, 7 | oveq12i 7422 | . . . . 5 ⊢ (𝑁 ↑m 𝑀) = ((Base‘𝑌) ↑m (Base‘𝑋)) |
| 9 | 5, 8 | eqtr4di 2789 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((Base‘𝑦) ↑m (Base‘𝑥)) = (𝑁 ↑m 𝑀)) |
| 10 | 9 | reseq2d 5971 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ (𝑁 ↑m 𝑀))) |
| 11 | 10 | adantl 481 | . 2 ⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ (𝑁 ↑m 𝑀))) |
| 12 | simprl 770 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 13 | simprr 772 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 14 | ovexd 7445 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁 ↑m 𝑀) ∈ V) | |
| 15 | 14 | resiexd 7213 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ( I ↾ (𝑁 ↑m 𝑀)) ∈ V) |
| 16 | 2, 11, 12, 13, 15 | ovmpod 7564 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁 ↑m 𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ↦ cmpt 5206 I cid 5552 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 ↑m cmap 8845 WUnicwun 10719 Basecbs 17233 SetCatcsetc 18093 ExtStrCatcestrc 18139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 |
| This theorem is referenced by: funcestrcsetclem6 18162 funcestrcsetclem7 18163 funcestrcsetclem8 18164 funcestrcsetclem9 18165 |
| Copyright terms: Public domain | W3C validator |