MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem5 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem5 17861
Description: Lemma 5 for funcestrcsetc 17866. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
funcestrcsetc.m 𝑀 = (Base‘𝑋)
funcestrcsetc.n 𝑁 = (Base‘𝑌)
Assertion
Ref Expression
funcestrcsetclem5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁m 𝑀)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcestrcsetclem5
StepHypRef Expression
1 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
21adantr 481 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
3 fveq2 6774 . . . . . 6 (𝑦 = 𝑌 → (Base‘𝑦) = (Base‘𝑌))
4 fveq2 6774 . . . . . 6 (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋))
53, 4oveqan12rd 7295 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑌) ↑m (Base‘𝑋)))
6 funcestrcsetc.n . . . . . 6 𝑁 = (Base‘𝑌)
7 funcestrcsetc.m . . . . . 6 𝑀 = (Base‘𝑋)
86, 7oveq12i 7287 . . . . 5 (𝑁m 𝑀) = ((Base‘𝑌) ↑m (Base‘𝑋))
95, 8eqtr4di 2796 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ((Base‘𝑦) ↑m (Base‘𝑥)) = (𝑁m 𝑀))
109reseq2d 5891 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ (𝑁m 𝑀)))
1110adantl 482 . 2 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ (𝑁m 𝑀)))
12 simprl 768 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
13 simprr 770 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
14 ovexd 7310 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑁m 𝑀) ∈ V)
1514resiexd 7092 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ (𝑁m 𝑀)) ∈ V)
162, 11, 12, 13, 15ovmpod 7425 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁m 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cmpt 5157   I cid 5488  cres 5591  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615  WUnicwun 10456  Basecbs 16912  SetCatcsetc 17790  ExtStrCatcestrc 17838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280
This theorem is referenced by:  funcestrcsetclem6  17862  funcestrcsetclem7  17863  funcestrcsetclem8  17864  funcestrcsetclem9  17865
  Copyright terms: Public domain W3C validator