Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcestrcsetclem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for funcestrcsetc 17515. (Contributed by AV, 23-Mar-2020.) |
Ref | Expression |
---|---|
funcestrcsetc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
funcestrcsetc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcestrcsetc.b | ⊢ 𝐵 = (Base‘𝐸) |
funcestrcsetc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcestrcsetc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcestrcsetc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcestrcsetc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) |
funcestrcsetc.m | ⊢ 𝑀 = (Base‘𝑋) |
funcestrcsetc.n | ⊢ 𝑁 = (Base‘𝑌) |
Ref | Expression |
---|---|
funcestrcsetclem5 | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁 ↑m 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcestrcsetc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) | |
2 | 1 | adantr 484 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) |
3 | fveq2 6674 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (Base‘𝑦) = (Base‘𝑌)) | |
4 | fveq2 6674 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋)) | |
5 | 3, 4 | oveqan12rd 7190 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑌) ↑m (Base‘𝑋))) |
6 | funcestrcsetc.n | . . . . . 6 ⊢ 𝑁 = (Base‘𝑌) | |
7 | funcestrcsetc.m | . . . . . 6 ⊢ 𝑀 = (Base‘𝑋) | |
8 | 6, 7 | oveq12i 7182 | . . . . 5 ⊢ (𝑁 ↑m 𝑀) = ((Base‘𝑌) ↑m (Base‘𝑋)) |
9 | 5, 8 | eqtr4di 2791 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((Base‘𝑦) ↑m (Base‘𝑥)) = (𝑁 ↑m 𝑀)) |
10 | 9 | reseq2d 5825 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ (𝑁 ↑m 𝑀))) |
11 | 10 | adantl 485 | . 2 ⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ (𝑁 ↑m 𝑀))) |
12 | simprl 771 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
13 | simprr 773 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
14 | ovexd 7205 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁 ↑m 𝑀) ∈ V) | |
15 | 14 | resiexd 6989 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ( I ↾ (𝑁 ↑m 𝑀)) ∈ V) |
16 | 2, 11, 12, 13, 15 | ovmpod 7317 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁 ↑m 𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3398 ↦ cmpt 5110 I cid 5428 ↾ cres 5527 ‘cfv 6339 (class class class)co 7170 ∈ cmpo 7172 ↑m cmap 8437 WUnicwun 10200 Basecbs 16586 SetCatcsetc 17447 ExtStrCatcestrc 17488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 |
This theorem is referenced by: funcestrcsetclem6 17511 funcestrcsetclem7 17512 funcestrcsetclem8 17513 funcestrcsetclem9 17514 |
Copyright terms: Public domain | W3C validator |