MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem5 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem5 18134
Description: Lemma 5 for funcestrcsetc 18139. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCatβ€˜π‘ˆ)
funcestrcsetc.s 𝑆 = (SetCatβ€˜π‘ˆ)
funcestrcsetc.b 𝐡 = (Baseβ€˜πΈ)
funcestrcsetc.c 𝐢 = (Baseβ€˜π‘†)
funcestrcsetc.u (πœ‘ β†’ π‘ˆ ∈ WUni)
funcestrcsetc.f (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
funcestrcsetc.g (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))))
funcestrcsetc.m 𝑀 = (Baseβ€˜π‘‹)
funcestrcsetc.n 𝑁 = (Baseβ€˜π‘Œ)
Assertion
Ref Expression
funcestrcsetclem5 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (π‘‹πΊπ‘Œ) = ( I β†Ύ (𝑁 ↑m 𝑀)))
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝑋   πœ‘,π‘₯   π‘₯,𝐢   𝑦,𝐡,π‘₯   𝑦,𝑋   πœ‘,𝑦   π‘₯,𝑀,𝑦   π‘₯,𝑁,𝑦   π‘₯,π‘Œ,𝑦
Allowed substitution hints:   𝐢(𝑦)   𝑆(π‘₯,𝑦)   π‘ˆ(π‘₯,𝑦)   𝐸(π‘₯,𝑦)   𝐹(π‘₯,𝑦)   𝐺(π‘₯,𝑦)

Proof of Theorem funcestrcsetclem5
StepHypRef Expression
1 funcestrcsetc.g . . 3 (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))))
21adantr 479 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)))))
3 fveq2 6894 . . . . . 6 (𝑦 = π‘Œ β†’ (Baseβ€˜π‘¦) = (Baseβ€˜π‘Œ))
4 fveq2 6894 . . . . . 6 (π‘₯ = 𝑋 β†’ (Baseβ€˜π‘₯) = (Baseβ€˜π‘‹))
53, 4oveqan12rd 7437 . . . . 5 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)) = ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)))
6 funcestrcsetc.n . . . . . 6 𝑁 = (Baseβ€˜π‘Œ)
7 funcestrcsetc.m . . . . . 6 𝑀 = (Baseβ€˜π‘‹)
86, 7oveq12i 7429 . . . . 5 (𝑁 ↑m 𝑀) = ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹))
95, 8eqtr4di 2783 . . . 4 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯)) = (𝑁 ↑m 𝑀))
109reseq2d 5984 . . 3 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))) = ( I β†Ύ (𝑁 ↑m 𝑀)))
1110adantl 480 . 2 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ ( I β†Ύ ((Baseβ€˜π‘¦) ↑m (Baseβ€˜π‘₯))) = ( I β†Ύ (𝑁 ↑m 𝑀)))
12 simprl 769 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝑋 ∈ 𝐡)
13 simprr 771 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ π‘Œ ∈ 𝐡)
14 ovexd 7452 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑁 ↑m 𝑀) ∈ V)
1514resiexd 7226 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ ( I β†Ύ (𝑁 ↑m 𝑀)) ∈ V)
162, 11, 12, 13, 15ovmpod 7571 1 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (π‘‹πΊπ‘Œ) = ( I β†Ύ (𝑁 ↑m 𝑀)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  Vcvv 3463   ↦ cmpt 5231   I cid 5574   β†Ύ cres 5679  β€˜cfv 6547  (class class class)co 7417   ∈ cmpo 7419   ↑m cmap 8843  WUnicwun 10723  Basecbs 17179  SetCatcsetc 18063  ExtStrCatcestrc 18111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422
This theorem is referenced by:  funcestrcsetclem6  18135  funcestrcsetclem7  18136  funcestrcsetclem8  18137  funcestrcsetclem9  18138
  Copyright terms: Public domain W3C validator