MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem5 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem5 18050
Description: Lemma 5 for funcestrcsetc 18055. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
funcestrcsetc.m 𝑀 = (Base‘𝑋)
funcestrcsetc.n 𝑁 = (Base‘𝑌)
Assertion
Ref Expression
funcestrcsetclem5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁m 𝑀)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcestrcsetclem5
StepHypRef Expression
1 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
21adantr 480 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
3 fveq2 6822 . . . . . 6 (𝑦 = 𝑌 → (Base‘𝑦) = (Base‘𝑌))
4 fveq2 6822 . . . . . 6 (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋))
53, 4oveqan12rd 7366 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑌) ↑m (Base‘𝑋)))
6 funcestrcsetc.n . . . . . 6 𝑁 = (Base‘𝑌)
7 funcestrcsetc.m . . . . . 6 𝑀 = (Base‘𝑋)
86, 7oveq12i 7358 . . . . 5 (𝑁m 𝑀) = ((Base‘𝑌) ↑m (Base‘𝑋))
95, 8eqtr4di 2784 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ((Base‘𝑦) ↑m (Base‘𝑥)) = (𝑁m 𝑀))
109reseq2d 5928 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ (𝑁m 𝑀)))
1110adantl 481 . 2 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ (𝑁m 𝑀)))
12 simprl 770 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
13 simprr 772 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
14 ovexd 7381 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑁m 𝑀) ∈ V)
1514resiexd 7150 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ (𝑁m 𝑀)) ∈ V)
162, 11, 12, 13, 15ovmpod 7498 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁m 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5172   I cid 5510  cres 5618  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750  WUnicwun 10591  Basecbs 17120  SetCatcsetc 17982  ExtStrCatcestrc 18028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  funcestrcsetclem6  18051  funcestrcsetclem7  18052  funcestrcsetclem8  18053  funcestrcsetclem9  18054
  Copyright terms: Public domain W3C validator