MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem5 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem5 18213
Description: Lemma 5 for funcestrcsetc 18218. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
funcestrcsetc.m 𝑀 = (Base‘𝑋)
funcestrcsetc.n 𝑁 = (Base‘𝑌)
Assertion
Ref Expression
funcestrcsetclem5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁m 𝑀)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcestrcsetclem5
StepHypRef Expression
1 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
21adantr 480 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
3 fveq2 6920 . . . . . 6 (𝑦 = 𝑌 → (Base‘𝑦) = (Base‘𝑌))
4 fveq2 6920 . . . . . 6 (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋))
53, 4oveqan12rd 7468 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑌) ↑m (Base‘𝑋)))
6 funcestrcsetc.n . . . . . 6 𝑁 = (Base‘𝑌)
7 funcestrcsetc.m . . . . . 6 𝑀 = (Base‘𝑋)
86, 7oveq12i 7460 . . . . 5 (𝑁m 𝑀) = ((Base‘𝑌) ↑m (Base‘𝑋))
95, 8eqtr4di 2798 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ((Base‘𝑦) ↑m (Base‘𝑥)) = (𝑁m 𝑀))
109reseq2d 6009 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ (𝑁m 𝑀)))
1110adantl 481 . 2 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))) = ( I ↾ (𝑁m 𝑀)))
12 simprl 770 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
13 simprr 772 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
14 ovexd 7483 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑁m 𝑀) ∈ V)
1514resiexd 7253 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ (𝑁m 𝑀)) ∈ V)
162, 11, 12, 13, 15ovmpod 7602 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁m 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249   I cid 5592  cres 5702  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884  WUnicwun 10769  Basecbs 17258  SetCatcsetc 18142  ExtStrCatcestrc 18190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  funcestrcsetclem6  18214  funcestrcsetclem7  18215  funcestrcsetclem8  18216  funcestrcsetclem9  18217
  Copyright terms: Public domain W3C validator