![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcestrcsetclem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for funcestrcsetc 18139. (Contributed by AV, 23-Mar-2020.) |
Ref | Expression |
---|---|
funcestrcsetc.e | β’ πΈ = (ExtStrCatβπ) |
funcestrcsetc.s | β’ π = (SetCatβπ) |
funcestrcsetc.b | β’ π΅ = (BaseβπΈ) |
funcestrcsetc.c | β’ πΆ = (Baseβπ) |
funcestrcsetc.u | β’ (π β π β WUni) |
funcestrcsetc.f | β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) |
funcestrcsetc.g | β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ ((Baseβπ¦) βm (Baseβπ₯))))) |
funcestrcsetc.m | β’ π = (Baseβπ) |
funcestrcsetc.n | β’ π = (Baseβπ) |
Ref | Expression |
---|---|
funcestrcsetclem5 | β’ ((π β§ (π β π΅ β§ π β π΅)) β (ππΊπ) = ( I βΎ (π βm π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcestrcsetc.g | . . 3 β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ ((Baseβπ¦) βm (Baseβπ₯))))) | |
2 | 1 | adantr 479 | . 2 β’ ((π β§ (π β π΅ β§ π β π΅)) β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ ((Baseβπ¦) βm (Baseβπ₯))))) |
3 | fveq2 6894 | . . . . . 6 β’ (π¦ = π β (Baseβπ¦) = (Baseβπ)) | |
4 | fveq2 6894 | . . . . . 6 β’ (π₯ = π β (Baseβπ₯) = (Baseβπ)) | |
5 | 3, 4 | oveqan12rd 7437 | . . . . 5 β’ ((π₯ = π β§ π¦ = π) β ((Baseβπ¦) βm (Baseβπ₯)) = ((Baseβπ) βm (Baseβπ))) |
6 | funcestrcsetc.n | . . . . . 6 β’ π = (Baseβπ) | |
7 | funcestrcsetc.m | . . . . . 6 β’ π = (Baseβπ) | |
8 | 6, 7 | oveq12i 7429 | . . . . 5 β’ (π βm π) = ((Baseβπ) βm (Baseβπ)) |
9 | 5, 8 | eqtr4di 2783 | . . . 4 β’ ((π₯ = π β§ π¦ = π) β ((Baseβπ¦) βm (Baseβπ₯)) = (π βm π)) |
10 | 9 | reseq2d 5984 | . . 3 β’ ((π₯ = π β§ π¦ = π) β ( I βΎ ((Baseβπ¦) βm (Baseβπ₯))) = ( I βΎ (π βm π))) |
11 | 10 | adantl 480 | . 2 β’ (((π β§ (π β π΅ β§ π β π΅)) β§ (π₯ = π β§ π¦ = π)) β ( I βΎ ((Baseβπ¦) βm (Baseβπ₯))) = ( I βΎ (π βm π))) |
12 | simprl 769 | . 2 β’ ((π β§ (π β π΅ β§ π β π΅)) β π β π΅) | |
13 | simprr 771 | . 2 β’ ((π β§ (π β π΅ β§ π β π΅)) β π β π΅) | |
14 | ovexd 7452 | . . 3 β’ ((π β§ (π β π΅ β§ π β π΅)) β (π βm π) β V) | |
15 | 14 | resiexd 7226 | . 2 β’ ((π β§ (π β π΅ β§ π β π΅)) β ( I βΎ (π βm π)) β V) |
16 | 2, 11, 12, 13, 15 | ovmpod 7571 | 1 β’ ((π β§ (π β π΅ β§ π β π΅)) β (ππΊπ) = ( I βΎ (π βm π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 Vcvv 3463 β¦ cmpt 5231 I cid 5574 βΎ cres 5679 βcfv 6547 (class class class)co 7417 β cmpo 7419 βm cmap 8843 WUnicwun 10723 Basecbs 17179 SetCatcsetc 18063 ExtStrCatcestrc 18111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 |
This theorem is referenced by: funcestrcsetclem6 18135 funcestrcsetclem7 18136 funcestrcsetclem8 18137 funcestrcsetclem9 18138 |
Copyright terms: Public domain | W3C validator |